Leukocyte- and platelet-rich fibrin as graft material improves microRNA-21 expression and decreases oxidative stress in the calvarial defects of diabetic rabbits
microRNA-21; L-PRF; Diabetes; Oxidative stress; Bone healing; MMP-9
Abstract :
[en] Objective: Leukocyte- and platelet-rich fibrin (L-PRF) represents a natural, low-cost product which may promote tissue healing by mechanisms not fully elucidated. Diabetes mellitus (DM) disrupts bone healing by inducing inflammation and oxidative stress (OS), mechanisms regulated by microRNAs (miRs). The aim of the present study was to investigate the microRNA-21 (miR-21) involvement in diabetic bone regeneration using L-PRF alone or in combination with a standard grafting material. Design: After the induction of diabetes (alloxan 100 mg/kg), four cranial osteotomies were made in diabetic (n=12) and non-diabetic (n=12) rabbits: one was left empty and the remaining three were grafted with LPRF, bovine hydroxyapatite (Bio-Oss®) and L-PRF+Bio-Oss®. Two and eight weeks postoperatively, the samples were harvested for miR-21 expression (Real-time RT-PCR) and enzyme-linked immunosorbent assay analyses. Results: Diabetic rabbits showed decreased miR-21 and matrix metalloproteinase-9 (MMP-9) protein expression while increased malondialdehyde (MDA) levels two weeks postoperatively; however, there were no significant differences in miR-21 and MMP-9 levels between diabetic and non-diabetic rabbits in samples taken eight weeks postoperatively. Application of L-PRF and L-PRF+Bio-Oss® improved miR-21 and MMP-9 and decreased MDA levels while Bio-Oss® alone enhanced superoxide dismutase (SOD) activity levels in diabetic rabbits. Conclusion: L-PRF alone or in combination with bovine hydroxyapatite as bone graft could be beneficial in DM since it seems to improve inflammation-modulatory miR-21 expression and decreases oxidative stress.
Research Center/Unit :
d‐BRU - Dental Biomaterials Research Unit - ULiège
Disciplines :
Dentistry & oral medicine
Author, co-author :
BACEVIC, Miljana ; Centre Hospitalier Universitaire de Liège - CHU > Département de dentisterie > Service de médecine dentaire
BRKOVIC, Bozidar; Department of Oral Surgery, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
LAMBERT, France ; Centre Hospitalier Universitaire de Liège - CHU > Département de dentisterie > Service de médecine dentaire
DJUKIC, Ljiljana; Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
PETROVIC, Nina; Department of Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinča, University of Belgrade, Belgrade, Serbia
ROGANOVIC, Jelena; Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
Language :
English
Title :
Leukocyte- and platelet-rich fibrin as graft material improves microRNA-21 expression and decreases oxidative stress in the calvarial defects of diabetic rabbits
Canfrán-Duque, A., Rotllan, N., Zhang, X., Fernández-Fuertes, M., Ramírez-Hidalgo, C., Araldi, E., Suárez, Y., Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Molecular Medicine 9 (2017), 1244–1262 10.15252%2Femmm.201607492.
Catalfamo, D.L., Britten, T.M., Storch, D.L., Calderon, N.L., Sorenson, H.L., Wallet, S.M., Hyperglycemia induced and intrinsic alterations in type 2 diabetes-derived osteoclast function. Oral Diseases 19 (2013), 303–312, 10.1111/odi.12002.
Chien, H.Y., Lee, T.P., Chen, C.Y., Chiu, Y.H., Lin, Y.C., Lee, L.S., Li, W.C., Circulating microRNA as a diagnostic marker in populations with type 2 diabetes mellitus and diabetic complications. Journal of the Chinese Medical Association 78 (2015), 204–211, 10.1016/j.jcma.2014.11.002.
Claes, L., Recknagel, S., Ignatius, A., Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology 8 (2012), 133–143, 10.1038/nrrheum.2012.1.
Darabi, F., Aghaei, M., Movahedian, A., Pourmoghadas, A., Sarrafzadegan, N., The role of serum levels of microRNA-21 and matrix metalloproteinase-9 in patients with acute coronary syndrome. Molecular and Cellular Biochemistry 422 (2016), 51–60, 10.1007/s11010-016-2805-z.
Das, A., Ganesh, K., Khanna, S., Sen, C.K., Roy, S., Engulfment of apoptotic cells by macrophages: A role of micro-RNA-21 in the resolution of wound inflammation. Journal of Immunology 192 (2014), 1120–1129, 10.4049/jimmunol.1300613.
Dohan, D.M., Choukroun, J., Diss, A., Dohan, S.L., Dohan, A.J., Mouhyi, J., Gogly, B., Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 101, 2006, 10.1016/j.tripleo.2005.07.008 e3744.
Dohan Ehrenfest, D.M., Pinto, N.R., Pereda, A., Jiménez, P., Corso, M.D., Kang, B.S., Quirynen, M., The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets 29 (2018), 171–184, 10.1080/09537104.2017.1293812.
Dohan Ehrenfest, D.M., Doglioli, P., de Peppo, G.M., Del Corso, M., Charrier, J.B., Choukroun's platelet-rich fibrin (PRF) stimulates in vitro proliferation and differentiation of human oral bone mesenchymal stem cell in a dose-dependent way. Archives of Oral Biology 55 (2010), 185–194, 10.1016/j.archoralbio.2010.01.004.
Dohan Ehrenfest, D.M., Diss, A., Odin, G., Doglioli, P., Hippolyte, M.P., Charrier, J.B., In vitro effects of Choukroun's PRF (platelet-rich fibrin) on human gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts in primary cultures. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 108 (2009), 341–352, 10.1016/j.tripleo.2009.04.020.
Donos, N., Dereka, X., Mardas, N., Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontology 2000:68 (2015), 99–121, 10.1111/prd.12077.
Dubois-Deruy, E., Cuvelliez, M., Fiedler, J., Charrier, H., Mulder, P., Hebbar, E., Pinet, F., MicroRNAs regulating superoxide dismutase 2 are new circulating biomarkers of heart failure. Scientific Reports, 7, 2017, 14747, 10.1038/s41598-017-15011-6.
Feng, J., Xing, W., Xie, L., Regulatory roles of MicroRNAs in diabetes. International Journal of Molecular Sciences, 17, 2016, 1729, 10.3390/ijms17101729.
Fujita, H., Fujishima, H., Chida, S., Takahashi, K., Qi, Z., Kanetsuna, Y., Takahashi, T., Reduction of renal superoxide dismutase in progressive diabetic nephropathy. Journal of the American Society of Nephrology 20 (2009), 1303–1313, 10.1681/ASN.2008080844.
Galiano, R.D., Tepper, O.M., Pelo, C.R., Bhatt, K.A., Callaghan, M., Bastidas, N., Gurtner, G.C., Topical vascular endothelial growth factor accelerates diabetic wound healing through increased angiogenesis and by mobilizing and recruiting bone marrow-derived cells. American Journal of Pathology 164 (2004), 1935–1947, 10.1016/S0002-9440(10)63754-6.
Gomes, M.F., Valva, V.N., Vieira, E.M., Giannasi, L.C., Salgado, M.A., Vilela-Goulart, M.G., Homogenous demineralized dentin matrix and platelet-rich plasma for bone tissue engineering in cranioplasty of diabetic rabbits: Biochemical, radiographic, and histological analysis. International Journal of Oral and Maxillofacial Surgery 45 (2016), 255–266, 10.1016/j.ijom.2015.09.009.
Gong, Y., Hart, E., Shchurin, A., Hoover-Plow, J., Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. Journal of Clinical Investigation 118 (2008), 3012–3024, 10.1172/JCI32750.
Hagiwara, S., McClelland, A., Kantharidis, P., MicroRNA in diabetic nephropathy: Renin angiotensin, AGE/RAGE, and oxidative stress pathway. Journal of Diabetes Research, 2013, 173783, 10.1155/2013/173783 2013.
Hanania, R., Sun, H.S., Xu, K., Pustylnik, S., Jeganathan, S., Harrison, R.E., Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. Journal of Biological Chemistry 287 (2012), 8468–8483, 10.1074/jbc.M111.290676.
Hu, C.H., Sui, B.D., Du, F.Y., Shuai, Y., Zheng, C.X., Zhao, P., Jin, Y., miR-21deficiency inhibits osteoclast function and prevents bone loss in mice. Scientific Reports 7 (2017), 43191–44319, 10.1038/srep43191.
Jiao, H., Xiao, E., Graves, D.T., Diabetes and its effect on bone and fracture healing. Current Osteoporosis Reports 13 (2015), 327–335, 10.1007/s11914-015-0286-8.
Kedmi, M., Sas-Chen, A., Yarden, Y., MicroRNAs and growth factors: An Alliance propelling tumor progression. Journal of Clinical Medicine 4:8 (2015), 1578–1599, 10.3390/jcm4081578.
Lin, Y., Liu, X., Cheng, Y., Yang, J., Huo, Y., Zhang, C., Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. Journal of Biological Chemistry 284 (2009), 7903–7913, 10.1074/jbc.M806920200.
Madhyastha, R., Madhyastha, H., Nakajima, Y., Omura, S., Maruyama, M., MicroRNA signature in diabetic wound healing: Promotive role of miR-21 in fibroblast migration. International Wound Journal 9 (2012), 355–361, 10.1111/j.1742-481X.2011.00890.x.
Meng, Y.B., Li, X., Li, Z.Y., Zhao, J., Yuan, X.B., Ren, Y., Yang, X.J., microRNA-21promotes osteogenic differentiation of mesenchymal stem cells by the PI3K/β-cateninpathway. Journal of Orthopaedic Research 33 (2015), 957–964, 10.1002/jor.22884.
Mody, N., Parhami, F., Sarafian, T.A., Demer, L.L., Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radical Biology & Medicine 31 (2001), 509–519.
Öncü, E., Alaaddinoğlu, E., The effect of platelet-rich fibrin on implant stability. International Journal of Oral and Maxillofacial Implants 30 (2015), 578–582, 10.11607/jomi.3897.
Radović, N., NikolićJakoba, N., Petrović, N., Milosavljević, A., Brković, B., Roganović, J., MicroRNA-146a and microRNA-155 as novel crevicular fluid bbiomarkers for periodontitis in nondiabetic and type 2 diabetic patients. Journal of Clinical Periodontology 45 (2018), 663–671, 10.1111/jcpe.12888.
Rhee, J.W., Lee, K.W., Sohn, W.J., Lee, Y., Jeon, O.H., Kwon, H.J., Kim, D.S., Regulation of matrix metalloproteinase-9 gene expression and cell migration by NF-κB in response to CpG oligodeoxynucleotides in RAW 264.7 cells. Molecular Immunology 44 (2007), 1393–1400, 10.1016/j.molimm.2006.05.003.
Roganović, J., Djukić, L.J., Kršljak, E., Tanić, N., Stojić, D., Reduced muscarinic parotid secretion is underlain by impaired NO signaling in diabetic rabbits. Oral Diseases, 21(634), 2015, 640, 10.1111/odi.12327.
Roszer, T., Inflammation as death or life signal in diabetic fracture healing. Inflammation Research 60 (2011), 3–10, 10.1007/s00011-010-0246-9.
Sá, M.A., Andrade, V.B., Mendes, R.M., Caliari, M.V., Ladeira, L.O., Silva, E.E., Ferreira, A.J., Carbon nanotubes functionalized with sodium hyaluronate restore bone repair in diabetic rat sockets. Oral Diseases 19 (2013), 484–493, 10.1111/odi.12030.
Salas-Perez, F., Codner, E., Valencia, E., Pizarro, C., Carrasco, E., Perez-Bravo, F., MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218 (2013), 733–737, 10.1016/j.imbio.2012.08.276.
Schar, M.O., Diaz-Romero, J., Kohl, S., Zumstein, M.A., Nesic, D., Platelet-rich concentrates differentially release growth factors and induce cell migration in vitro. Clinical Orthoedics and Related Research 473 (2015), 1635–1643, 10.1007/s11999-015-4192-2.
Schmidt-Bleek, K., Schell, H., Schulz, N., Hoff, P., Perka, C., Buttgereit, F., Duda, G.N., Inflammatory phase of bone healing initiates the regenerative healing cascade. Cell and Tissue Research 347 (2012), 567–573, 10.1016/j.ajpath.2012.08.022.
Simonpieri, A., Del Corso, M., Vervelle, A., Jimbo, R., Inchingolo, F., Sammartino, G., Dohan Ehrenfest, D.M., Current knowledge and perspectives for the use of platelet-rich plasma (PRP) and platelet-rich fibrin (PRF) in oral and maxillofacial surgery part 2: Bone graft, implant and reconstructive surgery. Current Pharmaceutical Biotechnology 13 (2012), 1231–1256, 10.2174/138920112800624391.
Sohn, J.Y., Park, J.C., Um, Y.J., Jung, U.W., Kim, C.S., Cho, K.S., Choi, S.H., Spontaneous healing capacity of rabbit cranial defects of various sizes. Journal of Periodontal and Implant Science 40 (2010), 180–187, 10.5051/jpis.2010.40.4.180.
Wang, T., Feng, Y., Sun, H., Zhang, L., Hao, L., Shi, C., Zou, Z., miR-21regulates skin wound healing by targeting multiple aspects of the healing process. American Journal of Pathology 181 (2012), 1911–1920, 10.1016/j.ajpath.2012.08.022.
Wu, C.L., Lee, S.S., Tsai, C.H., Lu, K.H., Zhao, J.H., Chang, Y.C., Platelet-rich fibrin increases cell attachment, proliferation and collagen-related protein expression of human osteoblasts. Australian Dental Journal 57 (2012), 207–212, 10.1111/j.1834-7819.2012.01686.x.
Yin, W., Xu, H., Sheng, J., Xu, Z., Xie, X., Zhang, C., Comparative evaluation of the effects of plateletrich plasma formulations on extracellular matrix formation and the NFkappaB signaling pathway in human articular chondrocytes. Molecular Medicine Reports 15 (2017), 2940–2948, 10.3892/mmr.2017.6365.
Zeng, J., Xiong, Y., Li, G., Liu, M., He, T., Tang, Y., Tao, J., MiR-21 is overexpressed in response to high glucose and protects endothelial cells from apoptosis. Experimental and Clinical Endocrinology and Diabetes 121 (2013), 425–430, 10.1055/s-0033-1345169.
Zhang, Y., Tangl, S., Huber, C.D., Lin, Y., Qiu, L., Rausch-Fan, X., Effects of Choukroun's platelet-rich fibrin on bone regeneration in combination with deproteinized bovine bone mineral in maxillary sinus augmentation: A histological and histomorphometricstudy. Journal of Craniomaxillofacial Surgery 40 (2012), 321–328, 10.1016/j.jcms.2011.04.020.
Zhang, L., He, S., Yang, F., Yu, H., Xiem, W., Dai, Q., Zhang, K., Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21. Canadian Journal of Physiology and Pharmacology 94 (2016), 1249–1256, 10.1139/cjpp- 2016-0066.
Zhou, W., Su, L., Duan, X., Chen, X., Hays, A., Upadhyayula, S., Liang, S., MicroRNA- 21 down-regulates inflammation and inhibits periodontitis. Molecular Immunology 101 (2018), 608–614, 10.1016/j.molimm.2018.05.008.