[en] The direct measurements of the cosmic electron-positron spectrum around 1 TeV made by DAMPE have induced many theoretical speculations about possible excesses in the data above the standard astrophysical predictions that might have the dark matter (DM) origin. These attempts mainly fall into two categories: i) DM annihilation (or decay) in the Galactic halo producing the broad spectrum excess; ii) DM annihilation in the nearby compact subhalo producing the sharp peak at 1.4 TeV. We investigate the gamma-ray emission accompanying e+e− production in DM annihilation, as well as various theoretical means to suppress the prompt radiation, such as specific interaction vertices or multi-cascade modes, and conclude that these attempts are in tension with various gamma-ray observations. We show that the DM explanations of the broad spectrum excess tend to contradict the diffuse isotropic gamma-ray background (IGRB), measured by Fermi-LAT, while the nearby subhalo scenario is constrained by nonobservation in the surveys, performed by Fermi-LAT, MAGIC and HESS. We also briefly review other types of gamma-ray constraints, which seem to rule out the DM interpretations of the DAMPE broad spectrum excess as well.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Laletin, Maxim ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
Belotsky, Konstantin; National Research Nuclear University MEPhI > Deopartment of Elementary Particle Physics
Solovyov, Maxim; National Research Nuclear University MEPhI > Department of Elementary Particle Physics
Kamaletdinov, Airat; National Research Nuclear University MEPhI > Department of Elementary Particle Physics
Bernabei, R., Search for WIMP annual modulation signature: results from DAMA/NaI-3 and DAMA/NaI-4 and the global combined analysis (2000) Phys. Lett., B480, pp. 23-31
Hunter, S.D., EGRET Observations of the diffuse gamma-ray emission from the galactic plane (1997) Astrophys. J., 481, pp. 205-240
Bulbul, E., Markevitch, M., Foster, A., Smith, R.K., Loewenstein, M., Randall, S.W., Detection of an unidentified emission line in the stacked x-ray spectrum of galaxy clusters (2014) Astrophys. J., 789, p. 13
Adriani, O., An anomalous positron abundance in cosmic rays with energies 15-100 gev (2009) Nature, 458, pp. 607-609
Ackermann, M., Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope (2012) Phys. Rev. Lett., 108, p. 011103
Aguilar, M., First result from the alpha magnetic spectrometer on the international space station: precision measurement of the positron fraction in primary cosmic rays of 05–350 gev (2013) Phys. Rev. Lett., 110, p. 141102
Feldman, D., Liu, Z., Nath, P., Pamela positron excess as a signal from the hidden sector (2009) Phys. Rev. D, 79
Grajek, P., Kane, G., Phalen, D., Pierce, A., Watson, S., Is the PAMELA positron excess winos? (2009) Phys. Rev. D, 79
Nardi, E., Sannino, F., Strumia, A., Decaying dark matter can explain the e+- excesses (2009) J. Cosmol. Astropart. Phys., 901, p. 043
Arkani-Hamed, N., Finkbeiner, D.P., Slatyer, T.R., Weiner, N., A theory of dark matter (2009) Phys. Rev., D79, p. 015014
Meade, P., Papucci, M., Strumia, A., Volansky, T., Dark matter interpretations of the e+- excesses after FERMI (2010) Nuclear Phys. B, 831, pp. 178-203
Barwick, S.W., Measurements of the cosmic ray positron fraction from 1-GeV to 50-GeV (1997) Astrophys. J., 482, pp. L191-L194
Baltz, E.A., Edsjo, J., Freese, K., Gondolo, P., The cosmic ray positron excess and neutralino dark matter (2002) Phys. Rev. D, 65
Kane, G.L., Wang, L.-T., Wells, J.D., Supersymmetry and the positron excess in cosmic rays (2002) Phys. Rev. D, 65
Hooper, D., Kribs, G.D., Kaluza–klein dark matter and the positron excess (2004) Phys. Rev., D70, p. 115004
Cirelli, M., Moulin, E., Panci, P., Serpico, P.D., Viana, A., Gamma ray constraints on decaying dark matter (2012) Phys. Rev. D, 86
Kopp, J., Constraints on dark matter annihilation from AMS-02 results (2013) Phys. Rev. D, 88
Ibarra, A., Tran, D., Weniger, C., Indirect searches for decaying dark matter (2013) Internat. J. Modern Phys., A28, p. 1330040
Belotsky, K., Budaev, R., Kirillov, A., Laletin, M., Fermi-lat kills dark matter interpretations of AMS-02 data. or not? (2017) J. Cosmol. Astropart. Phys., 1701, p. 021
Blanco, C., Hooper, D., Constraints on decaying dark matter from the isotropic gamma-ray background
Hooper, D., Blasi, P., Serpico, P.D., Pulsars as the sources of high energy cosmic ray positrons (2009) J. Cosmol. Astropart. Phys., 901, p. 025
Yuksel, H., Kistler, M.D., Stanev, T., TeV Gamma rays from geminga and the origin of the GeV positron excess (2009) Phys. Rev. Lett., 103, p. 051101
Xi, S.-Q., Liu, R.-Y., Huang, Z.-Q., Fang, K., Yan, H., Wang, X.-Y., GeV observations of the extended pulsar wind nebulae challenge the pulsar interpretations of the cosmic-ray positron excess
Manconi, S., M. Di Mauro, F. Donato, Multi-messenger constraints to the local emission of cosmic-ray electrons
Hooper, D., Cholis, I., Linden, T., Fang, K., Hawc observations strongly favor pulsar interpretations of the cosmic-ray positron excess (2017) Phys. Rev. D, 96
Profumo, S., Reynoso-Cordova, J., Kaaz, N., Silverman, M., Lessons from HAWC pulsar wind nebulae observations: the diffusion constant is not a constant
pulsars remain the likeliest sources of the anomalous positron fraction
cosmic rays are trapped for long periods of time in pockets of inefficient diffusion (2018) Phys. Rev. D, 97
Fang, K., Bi, X.-J., Yin, P.-F., Yuan, Q., Two-zone diffusion of electrons and positrons from geminga explains the positron anomaly (2018) Astrophys. J., 863, p. 30
Ambrosi, G., Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons (2017) Nature, 552, pp. 63-66
Adriani, O., Extended measurement of the cosmic-ray electron and positron spectrum from 11 GeV to 48 TeV with the calorimetric electron telescope on the international space station (2018) Phys. Rev. Lett., 120, p. 261102
Aharonian, F., Probing the atic peak in the cosmic-ray electron spectrum with H.E.S.S (2009) Astron. Astrophys., 508, p. 561
(2011), pp. 47-50. , D. Borla Tridon, P. Colin, L. Cossio, M. Doro, V. Scalzotto, Measurement of the cosmic electron spectrum with the MAGIC telescopes, in: Proceedings, 32nd International Cosmic Ray Conference (ICRC 2011): Beijing, China, August 11-18, 6, 2011,
Staszak, D., A cosmic-ray electron spectrum with VERITAS (2016), PoS ICRC2015 411
Asaoka, Y., The calorimetric electron telescope (CALET) on the international space station: results from the first two years on orbit (2019) J. Phys. Conf. Ser., 1181, p. 012003
Mazziotta, M.N., Costanza, F., Cuoco, A., Gargano, F., Loparco, F., Zimmer, S., Search for features in the cosmic-ray electron and positron spectrum measured by the fermi large area telescope (2018) Phys. Rev. D, 98
Fowlie, A., DAMPE squib? significance of the 1.4 TeV DAMPE excess (2018) Phys. Lett. B, 780, pp. 181-184
Jin, H.-B., Yue, B., Zhang, X., Chen, X., Cosmic ray e+e− spectrum excess and peak feature observed by the DAMPE experiment from dark matter
Yuan, Q., Interpretations of the DAMPE electron data,
Wang, B., Bi, X., Lin, S., Yin, P., Explanations of the DAMPE high energy electron/positron spectrum in the dark matter annihilation and pulsar scenarios (2018) Sci. China Phys. Mech. Astron., 61, p. 101004
Li, T., Okada, N., Shafi, Q., Type II seesaw mechanism with scalar dark matter in light of AMS-02, DAMPE, and Fermi-LAT data (2018) Phys. Rev. D, 98
Gao, Y., Ma, Y.-Z., Implications of dark matter cascade decay from DAMPE, HESS, Fermi-LAT and AMS02 data
Feng, L., Kang, Z., Yuan, Q., Yin, P.-F., Fan, Y.-Z., Interpretation of the cosmic ray positron and electron excesses with an annihilation-decay dark matter scenario
Liu, X., Liu, Z., Su, Y., Two-mediator dark matter models and cosmic electron excess
Cao, J., Guo, X., Shang, L., Wang, F., Wu, P., Zu, L., Scalar dark matter explanation of the DAMPE data in the minimal left-right symmetric model (2018) Phys. Rev. D, 97
Cao, J., Feng, L., Guo, X., Shang, L., Wang, F., Wu, P., Scalar dark matter interpretation of the DAMPE data with U(1) gauge interactions (2018) Phys. Rev. D, 97
Liu, G.-L., Wang, F., Wang, W., Yang, J.M., Explaining DAMPE results by dark matter with hierarchical lepton-specific Yukawa interactions (2018) Chin. Phys. C, 42
Ding, R., Han, Z.-L., Feng, L., Zhu, B., Confronting the DAMPE excess with the scotogenic type-II seesaw model (2018) Chin. Phys. C, 42
Li, T., Okada, N., Shafi, Q., matter, S.D., Scalar dark matter type II seesaw and the DAMPE cosmic ray e++e− excess (2018) Phys. Lett. B, 779, pp. 130-135
Chen, C.-H., Chiang, C.-W., Nomura, T., Explaining the DAMPE e+e− excess using the higgs triplet model with a vector dark matter (2018) Phys. Rev. D, 97
Okada, N., Seto, O., Dampe excess from decaying right-handed neutrino dark matter (2018) Modern Phys. Lett., A33, p. 1850157
Ackermann, M., The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV (2015) Astrophys. J., 799, p. 86
http://galprop.stanford.edu/, The galprop code for cosmic-ray transport and diffuse emission production
Navarro, J.F., Frenk, C.S., White, S.D.M., A universal density profile from hierarchical clustering (1997) Astrophys. J., 490, pp. 493-508
Cirelli, M., Corcella, G., Hektor, A., Hutsi, G., Kadastik, M., Panci, P., PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection (2011) J. Cosmol. Astropart. Phys., 1103, p. 051
Linden, T., Star-forming galaxies significantly contribute to the isotropic gamma-ray background (2017) Phys. Rev. D, 96
(2015), pp. 3098-3104. , M. Di Mauro, The origin of the Fermi-LAT γ-ray background, in: Proceedings, 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) (In 4 Volumes): Rome, Italy, July 12-18, 3, 2017,
Di Sciascio, P., Roundtable on new high-altitude experiment in the south, synergy with CTA (2018), http://www.ssdc.asi.it/16thagilemeeting/dwl.php?file=workshop_files/slide/17a-DiSciascio_16th_Agile_WS.pdf
Niu, J.-S., Li, T., Xu, F.-Z., A simple and natural interpretations of the DAMPE cosmic ray electron/positron spectrum within two sigma deviations (2019) Eur. Phys. J. C, 79, p. 125
Liu, W., Bi, X.-J., Lin, S.-J., Yin, P.-F., Constraints on dark matter annihilation and decay from the isotropic gamma-ray background (2017) Chin. Phys. C, 41
Kalashev, O., Constraining dark matter and ultra-high energy cosmic ray sources with fermi-LAT diffuse gamma ray background (2016) EPJ Web Conf., 125, p. 02012
Sjöstrand, T., Mrenna, S., Skands, P., A brief introduction to pythia 81 (2008) Comput. Phys. Comm., 178, pp. 852-867
Mardon, J., Nomura, Y., Stolarski, D., Thaler, J., Dark matter signals from cascade annihilations (2009) J. Cosmol. Astropart. Phys., 905, p. 016
Yang, F., Su, M., Zhao, Y., Dark matter annihilation from nearby ultra-compact micro halos to explain the tentative excess at 1.4 TeV in DAMPE data,
Yang, Y.-P., Feng, L., Huang, X.-Y., Chen, X., Lu, T., Zong, H.-S., Constraints on ultracompact minihalos from extragalactic gamma-ray background (2011) J. Cosmol. Astropart. Phys., 1112, p. 020
Fan, Y.-Z., Huang, W.-C., Spinrath, M., Tsai, Y.-L.S., Yuan, Q., A model explaining neutrino masses and the DAMPE cosmic ray electron excess (2018) Phys. Lett. B, 781, pp. 83-87
Funk, S., Hinton, J.A., Comparison of Fermi-LAT and CTA in the region between 10-100 GeV (2013) Astropart. Phys., 43, pp. 348-355
Aleksić, J., The major upgrade of the magic telescopes, part ii: a performance study using observations of the crab nebula (2016) Astropart. Phys., 72, pp. 76-94
https://www.mpi-hd.mpg.de/hfm/HESS/pages/home/proposals/, H.E.S.S. Proposal tools and information about the instrument
Ghosh, T., Kumar, J., Marfatia, D., Sandick, P., Searching for light from a dark matter clump (2018) J. Cosmol. Astropart. Phys., 1808, p. 023
Slatyer, T.R., Indirect dark matter signatures in the cosmic dark ages. i. generalizing the bound on s-wave dark matter annihilation from planck results (2016) Phys. Rev., D93, p. 023527
Diamanti, R., Lopez-Honorez, L., Mena, O., Palomares-Ruiz, S., Vincent, A.C., Constraining dark matter late-time energy injection: decays and p-wave annihilations (2014) J. Cosmol. Astropart. Phys., 1402, p. 017
Poulin, V., Lesgourgues, J., Serpico, P.D., Cosmological constraints on exotic injection of electromagnetic energy (2017) J. Cosmol. Astropart. Phys., 1703, p. 043
Liu, H., Slatyer, T.R., Zavala, J., Contributions to cosmic reionization from dark matter annihilation and decay (2016) Phys. Rev. D, 94
Slatyer, T.R., Wu, C.-L., General constraints on dark matter decay from the cosmic microwave background (2017) Phys. Rev. D, 95
Bai, Y., Berger, J., Lu, S., Supersymmetric resonant dark matter: a thermal model for the ams-02 positron excess (2018) Phys. Rev. D, 97
Xiang, Q.-F., Bi, X.-J., Lin, S.-J., Yin, P.-F., A dark matter model that reconciles tensions between the cosmic-ray e± excess and the gamma-ray and cmb constraints (2017) Phys. Lett. B, 773, pp. 448-454
Strigari, L.E., Dark matter in dwarf spheroidal galaxies and indirect detection: a review (2018) Rep. Progr. Phys., 81
Ahnen, M.L., Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and Fermi-LAT observations of dwarf satellite galaxies (2016) J. Cosmol. Astropart. Phys., 1602, p. 039
Abdallah, H., Search for dark matter annihilations towards the inner galactic halo from 10 years of observations with H.E.S.S- (2016) Phys. Rev. Lett., 117, p. 111301
Genolini, Y., Theoretical interpretations of DAMPE first results: a critical review (2018)
Abdollahi, S., Search for cosmic-ray electron and positron anisotropies with seven years of fermi large area telescope data (2017) Phys. Rev. Lett., 118, p. 091103
Gosenca, M., Adamek, J., Byrnes, C.T., Hotchkiss, S., 3d simulations with boosted primordial power spectra and ultracompact minihalos (2017) Phys. Rev. D, 96
Beck, G., Colafrancesco, S., Dark matter gets DAMPE (2016), 61st Annual Conference of the South African Institute of Physics (SAIP2016) Johannesburg, South Africa, July 4-8, 2018
Fang, K., Bi, X.-J., Yin, P.-F., Explanation of the knee-like feature in the dampe cosmic e−+e+ energy spectrum (2018) Astrophys. J., 854, p. 57
Kachelrieß, M., Neronov, A., Semikoz, D.V., Cosmic ray signatures of a 2–3 myr old local supernova (2018) Phys. Rev. D, 97
Mertsch, P., Stochastic cosmic ray sources and the TeV break in the all-electron spectrum (2018) J. Cosmol. Astropart. Phys., 1811, p. 045
Lipari, P., Understanding the cosmic ray positron flux
Schutz, K., Lin, T., Safdi, B.R., Wu, C.-L., Constraining a thin dark matter disk with gaia (2018) Phys. Rev. Lett., 121, p. 081101
Belotsky, K.M., Budaev, R.I., Kirillov, A.A., Solovyov, M.L., Gamma-rays from possible disk component of dark matter (2017) J. Phys. Conf. Ser., 798, p. 012084
Belotsky, K.M., Kirillov, A.A., Solovyov, M.L., Development of dark disk model of positron anomaly origin (2018) Internat. J. Modern Phys. D, 27
Kamaletdinov, A., Belotsky, K., Search for the suppression of the photon yield from the decay of dark matter particle (2018), Proceedings of the ICPPA 2018 Conference