[en] Multi-Higgs models equipped with global symmetries produce scalar dark matter (DM) candidates stabilized by the unbroken symmetry. It is remarkable that a conserved CP symmetry can also stabilize DM candidates, provided it is a CP symmetry of order higher than two. CP4 3HDM, the three-Higgs-doublet model with CP symmetry of order 4, is the simplest example of this kind. It contains two mass-degenerate scalar DM candidates φ and φ¯, each of them being a CP4 eigenstate and, therefore, its own antiparticle. A novel phenomenological feature of this model is the presence of φφ ↔ φ¯φ¯ conversion process, which conserves CP. It offers a rare example of DM models in which self-interaction in the dark sector can significantly affect cosmological and astrophysical observables. Here, we explore the thermal evolution of these DM species in the asymmetric regime. We assume that a mechanism external to CP4 3HDM produces an initial imbalance of the densities of φ and φ¯. As the Universe cools down, we track the evolution of the asymmetry through different stages, and determine how the final asymmetry depends on the interplay between the conversion and annihilation φφ¯→ SM and on the initial conditions. We begin with the analytic treatment of Boltzmann equations, present a detailed qualitative description of the process, and then corroborate it with numerical results obtained using a dedicated computer code. Finally, we check if the model can produce an observable indirect detection signal.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Physics
Author, co-author :
Laletin, Maxim ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Inter. fondamentales en physique et astrophysique (IFPA)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Planck 2015 results. XIII. Cosmological parameters (2016) Astron. Astrophys., 594, p. A13. , https://doi.org/10.1051/0004-6361/201525830, Planck collaboration [1502.01589]
Bertone, G., Hooper, D., Silk, J., Particle dark matter: Evidence, candidates and constraints (2005) Phys. Rept., 405, p. 279. , https://doi.org/10.1016/j.physrep.2004.08.031, [hep-ph/0404175]
Results from a search for dark matter in the complete LUX exposure (2017) Phys. Rev. Lett., 118, p. 021303. , https://doi.org/10.1103/PhysRevLett.118.021303, LUX collaboration [1608.07648]
First Dark Matter Search Results from the XENON1T Experiment (2017) Phys. Rev. Lett., 119, p. 181301. , https://doi.org/10.1103/PhysRevLett.119.181301, XENON collaboration [1705.06655]
The Fermi Galactic Center GeV Excess and Implications for Dark Matter (2017) Astrophys. J., 840 (1), p. 43. , https://doi.org/10.3847/1538-4357/aa6cab, Fermi-LAT collaboration [1704.03910]
Ivanov, I.P., Building and testing models with extended Higgs sectors (2017) Prog. Part. Nucl. Phys., 95, p. 160. , https://doi.org/10.1016/j.ppnp.2017.03.001, [1702.03776]
Ilnicka, A., Robens, T., Stefaniak, T., Constraining Extended Scalar Sectors at the LHC and beyond (2018) Mod. Phys. Lett., 33, p. 1830007. , https://doi.org/10.1142/S0217732318300070, [1803.03594]
Deshpande, N.G., Ma, E., Pattern of Symmetry Breaking with Two Higgs Doublets (1978) Phys. Rev., 18, p. 2574. , https://doi.org/10.1103/PhysRevD.18.2574
Cao, Q.-H., Ma, E., Rajasekaran, G., Observing the Dark Scalar Doublet and its Impact on the Standard-Model Higgs Boson at Colliders (2007) Phys. Rev., 76, p. 095011. , https://doi.org/10.1103/PhysRevD.76.095011, [0708.2939]
Barbieri, R., Hall, L.J., Rychkov, V.S., Improved naturalness with a heavy Higgs: An Alternative road to LHC physics (2006) Phys. Rev., 74, p. 015007. , https://doi.org/10.1103/PhysRevD.74.015007, [hep-ph/0603188]
Lopez Honorez, L., Nezri, E., Oliver, J.F., Tytgat, M.H.G., The Inert Doublet Model: An Archetype for Dark Matter (2007) J. Cosmol. Astropart. Phys., 2007 (2), p. 028. , 2007 [hep-ph/0612275]
Ilnicka, A., Krawczyk, M., Robens, T., Inert Doublet Model in light of LHC Run i and astrophysical data (2016) Phys. Rev., 93, p. 055026. , https://doi.org/10.1103/PhysRevD.93.055026, [1508.01671]
Belyaev, A., Cacciapaglia, G., Ivanov, I.P., Rojas-Abatte, F., Thomas, M., Anatomy of the Inert Two Higgs Doublet Model in the light of the LHC and non-LHC Dark Matter Searches (2018) Phys. Rev., 97, p. 035011. , https://doi.org/10.1103/PhysRevD.97.035011, [1612.00511]
Belyaev, A., Advancing LHC probes of dark matter from the inert two-Higgs-doublet model with the monojet signal (2019) Phys. Rev., 99, p. 015011. , https://doi.org/10.1103/PhysRevD.99.015011, [1809.00933]
Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Zarnecki, A.F., Benchmarking the Inert Doublet Model for e+ e- colliders (2018) J. High Energy Phys., 2018 (12), p. 081. , Benchmarking the Inert Doublet Model for ebsup
+esup
ebsup
-esup
colliders JHEP12(2018)081 [1809.07712]
Kalinowski, J., Kotlarski, W., Robens, T., Sokolowska, D., Zarnecki, A.F., Exploring Inert Scalars at CLIC, , [1811.06952]
Ivanov, I.P., Vdovin, E., Discrete symmetries in the three-Higgs-doublet model (2012) Phys. Rev., 86, p. 095030. , https://doi.org/10.1103/PhysRevD.86.095030, [1206.7108]
Ivanov, I.P., Vdovin, E., Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model (2013) Eur. Phys. J., 73, p. 2309. , https://doi.org/10.1140/epjc/s10052-013-2309-x, [1210.6553]
Keus, V., King, S.F., Moretti, S., Sokolowska, D., Dark Matter with Two Inert Doublets plus One Higgs Doublet (2014) J. High Energy Phys., 2014 (11), p. 016. , JHEP11(2014)016 [1407.7859]
Ahriche, A., Faisel, G., Ho, S.-Y., Nasri, S., Tandean, J., Effects of two inert scalar doublets on Higgs boson interactions and the electroweak phase transition (2015) Phys. Rev., 92, p. 035020. , https://doi.org/10.1103/PhysRevD.92.035020, [1501.06605]
Keus, V., King, S.F., Moretti, S., Sokolowska, D., Observable Heavy Higgs Dark Matter (2015) J. High Energy Phys., 2015 (11), p. 003. , JHEP11(2015)003 [1507.08433]
Cordero-Cid, A., CP violating scalar Dark Matter (2016) J. High Energy Phys., 2016 (12), p. 014. , JHEP12(2016)014 [1608.01673]
Sokolowska, D., Dark Matter Data and Constraints on Quartic Couplings in IDM, , [1107.1991]
Sokolowska, D., Dark Matter Data and Quartic Self-Couplings in Inert Doublet Model (2011) Acta Phys. Polon., 42, p. 2237. , https://doi.org/10.5506/APhysPolB.42.2237, [1112.2953]
Ivanov, I.P., Silva, J.P., CP-conserving multi-Higgs model with irremovable complex coefficients (2016) Phys. Rev., 93, p. 095014. , https://doi.org/10.1103/PhysRevD.93.095014, [1512.09276]
Haber, H.E., Ogreid, O.M., Osland, P., Rebelo, M.N., Symmetries and Mass Degeneracies in the Scalar Sector (2019) J. High Energy Phys., 2019 (1), p. 042. , JHEP01(2019)042 [1808.08629]
Ivanov, I.P., Keus, V., Vdovin, E., Abelian symmetries in multi-Higgs-doublet models (2012) J. Phys., 45, p. 215201. , https://doi.org/10.1088/1751-8113/45/21/215201, [1112.1660]
Ferreira, P.M., Ivanov, I.P., Jiménez, E., Pasechnik, R., Serôdio, H., CP4 miracle: Shaping Yukawa sector with CP symmetry of order four (2018) J. High Energy Phys., 2018 (1), p. 065. , JHEP01(2018)065 [1711.02042]
Bento, M.P., Haber, H.E., Romão, J.C., Silva, J.P., Multi-Higgs doublet models: Physical parametrization, sum rules and unitarity bounds (2017) J. High Energy Phys., 2017 (11), p. 095. , JHEP11(2017)095 [1708.09408]
Köpke, M., (2018) Investigation of the GCP Structure of Three-Higgs-Doublet Models and A General Method to Derive Boundedness Constraints for Multi-Higgs Potentials, , MSc Thesis, Karlsruhe Institute for Theoretical Physics (ITP), Karlsruhe Germany, https://www.itp.kit.edu/-media/publications/mastersthesis-marcelkoepke.pdf
Aranda, A., Ivanov, I.P., Jiménez, E., When the C in CP does not matter: Anatomy of order-4 CP eigenstates and their Yukawa interactions (2017) Phys. Rev., 95, p. 055010. , https://doi.org/10.1103/PhysRevD.95.055010, [1608.08922]
Graesser, M.L., Shoemaker, I.M., Vecchi, L., Asymmetric WIMP dark matter (2011) J. High Energy Phys., 2011 (10), p. 110. , JHEP10(2011)110 [1103.2771]
Iminniyaz, H., Drees, M., Chen, X., Relic Abundance of Asymmetric Dark Matter (2011) J. Cosmol. Astropart. Phys., 2011 (7), p. 003. , 2011 [1104.5548]
Zurek, K.M., Asymmetric Dark Matter: Theories, Signatures and Constraints (2014) Phys. Rept., 537, p. 91. , https://doi.org/10.1016/j.physrep.2013.12.001, [1308.0338]
Petraki, K., Volkas, R.R., Review of asymmetric dark matter (2013) Int. J. Mod. Phys., 28, p. 1330028. , https://doi.org/10.1142/S0217751X13300287, [1305.4939]
Buckley, M.R., Profumo, S., Regenerating a Symmetry in Asymmetric Dark Matter (2012) Phys. Rev. Lett., 108, p. 011301. , https://doi.org/10.1103/PhysRevLett.108.011301, [1109.2164]
Tulin, S., Yu, H.-B., Zurek, K.M., Oscillating Asymmetric Dark Matter (2012) J. Cosmol. Astropart. Phys., 2012 (5), p. 013. , 2012 [1202.0283]
Cirelli, M., Panci, P., Servant, G., Zaharijas, G., Consequences of DM/antiDM Oscillations for Asymmetric WIMP Dark Matter (2012) J. Cosmol. Astropart. Phys., 2012 (3), p. 015. , 2012 [1110.3809]
Ahmed, A., Duch, M., Grzadkowski, B., Iglicki, M., Multi-Component Dark Matter: The vector and fermion case (2018) Eur. Phys. J., 78, p. 905. , https://doi.org/10.1140/epjc/s10052-018-6371-2, [1710.01853]
Gondolo, P., Gelmini, G., Cosmic abundances of stable particles: Improved analysis (1991) Nucl. Phys., 360, p. 145. , https://doi.org/10.1016/0550-3213(91)90438-4
Cannoni, M., Relativistic σ vrel in the calculation of relics abundances: A closer look (2014) Phys. Rev., 89, p. 103533. , Relativistic langle
sigma
vbsub
resub
el rangle
in the calculation of relics abundances: a closer look, https://doi.org/10.1103/PhysRevD.89.103533 [1311.4494]
Gorbunov, D., Rubakov, V., (2011) Introduction to the Theory of the Early Universe: Hot Big Bang Theory, , World Scientific, Singapore [ISBN:9789814343978]
Bélanger, G., Boudjema, F., Pukhov, A., Semenov, A., MicrOMEGAs4.1: Two dark matter candidates (2015) Comput. Phys. Commun., 192, p. 322. , https://doi.org/10.1016/j.cpc.2015.03.003, [1407.6129]
Bringmann, T., Edsjö, J., Gondolo, P., Ullio, P., Bergström, L., DarkSUSY 6 : An Advanced Tool to Compute Dark Matter Properties Numerically (2018) J. Cosmol. Astropart. Phys., 2018 (7), p. 033. , 2018 [1802.03399]
Ambrogi, F., MadDM v.3.0: A Comprehensive Tool for Dark Matter Studies (2019) Phys. Dark Univ., 24, p. 100249. , https://doi.org/10.1016/j.dark.2018.11.009, [1804.00044]
Cirelli, M., PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection (2011) J. Cosmol. Astropart. Phys., 2011 (3), p. 051. , 2011 [Erratum ibid 1210 (2012) E01] [1012.4515]
Hambye, T., Ling, F.S., Lopez Honorez, L., Rocher, J., Scalar Multiplet Dark Matter (2009) J. High Energy Phys., 2009 (7), p. 090. , JHEP07(2009)090 [Erratum ibid 1005 (2010) 066] [0903.4010]
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.