Hiligsmann et al 1998_BIOD_Isolation of highly sulfate reducers.pdf
Author postprint (167.57 kB)
Paper related to a lecture presented at EU TMR summer school "The biological sulphur cycle : environmental science and technology"; April 1998 Wageningen, The Netherlands
[en] Eleven pure strains of sulfate-reducing bacteria have been isolated from lab-scale bioreactors or disposal sites, all featuring relatively high concentrations of sulfate, and from natural environments in order to produce sulfide from gypsum using hydrogen as energy source. The properties of the eleven strains have been investigated and compared to these of three collection strains i.e. Desulfovibrio desulfuricans and vulgaris and Desulfotomaculum orientis. Particular attention was paid to the absolute and relative sulfide production rate and to the hydrogen sulfide inhibition level. By comparison to the collection strains, a 75 % higher production rate and a hydrogen sulfide inhibition level about twice higher i.e. 25.1 mM have been achieved with strains isolated from sulfate-rich environments. The strain selection, particularly from sulfate-rich environments, should be considered as an optimization factor for the sulfate reduction processes.
Research Center/Unit :
Centre Wallon de Biologie Industrielle
Disciplines :
Biotechnology Environmental sciences & ecology
Author, co-author :
Hiligsmann, Serge ; Université de Liège - ULiège > Biochimie et microbiologie industrielles
Jacques, Philippe ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Bio-industries
Thonart, Philippe ; Université de Liège - ULiège > Gembloux Agro-Bio Tech
Language :
English
Title :
Isolation Of Highly Performant Sulfate Reducers From Sulfate-Rich Environments
Publication date :
1998
Journal title :
Biodegradation
ISSN :
0923-9820
eISSN :
1572-9729
Publisher :
Springer, New York, United States - New York
Volume :
9
Issue :
3-4
Pages :
285-292
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Bioconversion du gypse par des bactéries sulfato-réductrices
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Badziong, W., Thauer, R.K., Zeikus, J.G., Isolation of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source (1978) Arch. Microbiol., 116, pp. 41-49
Barnes, L.J., Janssen, F.J., Scheeren, P.J.H., Versteegh, J.H., Koch, R.O., Simultaneous microbial removal of sulphate and heavy metals from waste water (1992) Trans. Instn. Min. Metall. (Sect. C: Mineral Process. Extr. Metall.), 101, pp. C183-C189
Burgess, S.B., Wood, L.B., Plant studies in production of sulphur from sulphate-enriched sewage sludge (1961) J. Sci. Food Agric., 12, pp. 326-334
Butlin, K.R., Selwyn, S.C., Wakerley, D.S., Sulphide production from sulphate-enriched sewage sludges (1956) J. Appl. Bacteriol., 19, pp. 3-15
Cork, D.J., Cusanovich, M.A., Continuous disposal of sulfate by a bacterial mutualism (1979) Dev. Ind. Microbiol., 20, pp. 591-602
Deswaef, S., Salmon, T., Hiligsmann, S., Taillieu, X., Milande, N., Thonart, P., Crine, M., Treatment of gypsum waste in a two stage anaerobic reactor (1996) Wat. Sci. Technol.., 34, pp. 367-374
Du Preez, L.A., Odendaal, J.P., Maree, J.P., Ponsonby, M., Biological removal of sulphate from industrial effluents using producer gas as energy source (1992) Environ. Technol., 13, pp. 875-882
Dvorak, D.H., Hedin, R.S., Edenborn, H.M., McIntire, P.E., Treatment of metal-contaminated water using bacterial sulfate reduction: Results from pilot-scale reactors (1992) Biotechnol. Bioeng., 40, pp. 609-616
Florin, T.H.J., Hydrogen sulphide and total acid-volatile sulphide in faeces, determinated with a direct spectrophotometric method (1991) Clin. Chim. Acta, 196, pp. 127-134
Fogo, J.K., Popowsky, M., Spectrophotometric determination of hydrogen sulfide (1949) Anal. Chem., 21, pp. 732-734
Greenberg, A.E., Trussell, R.R., Clesceri, L.S., (1985) Standard Methods for the Examination of Water and Wastewater, , APHA-AWWA-WPCF, Washington
Hermann, M., Kenneth, M.N., Wolfe, R.S., Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere (1986) Appl. Environ. Microbiol., 51, pp. 1124-1126
Hiligsmann, S., Taillieu, X., Thonart, P., A biotechnological process to produce sulfide from the industrial by-product gypsum: New investigations (1995) Med. Fac. Landbouww. Univ. Gent, 60, pp. 2685-2691
Hiligsmann, S., Deswaef, S., Taillieu, X., Crine, M., Milande, N., Thonart, P., Production of sulfur from gypsum as an industrial by-product (1996) Appl. Biochem. Biotechnol., 57-58, pp. 959-969
Isa, Z., Grusenmeyer, S., Verstraete, W., Sulfate reduction relative to methane production in high-rate anaerobic digestion: Technical aspects (1986) Appl. Environ. Microbiol., 51, pp. 572-579
Kaufman, E.N., Little, M.H., Selvaraj, P.T., A biological process for the reclamation of flue gas desulfurization gypsum using mixed sulfate-reducing bacteria with inexpensive carbon sources (1997) Appl. Biochem. Biotechnol., 63-65, pp. 677-693
Maree, J.P., (1988) Sulphate Removal from Industrial Effluents, , Ph.D. thesis, University of the Orange Free State, Bloemfontein, South Africa
Maree, J.P., Hulse, G., Dods, D., Schutte, C.E., Pilot plant studies on biological sulphate removal from industrial effluent (1991) Wat. Sci. Technol., 23, pp. 1293-1300
Okabe, S., Nielsen, P.H., Characklis, W.G., Factors affecting microbial sulfate reduction by Desulfovibrio desulfuricans in continuous culture: Limiting nutrients and sulfide concentration (1992) Biotechnol. Bioeng., 40, pp. 725-734
Postgate, J.R., (1984) The Sulfate-reducing Bacteria, , Cambridge University Press, London
Reis, M.A., Almeida, J.S., Lemos, P.C., Carrondo, M.J.T., Effect of hydrogen sulfide on growth of sulfate reducing bacteria (1992) Biotechnol. Bioeng., 40, pp. 593-600
Sadana, J.C., Motey, A.V., Microbial production of sulfur from gypsum (1962) J.Sci. Ind. Res., 21 C, pp. 124-127
Salmon, T., Schlitz, M., Crine, M., Modeling a syntrophic association of acidogenic and sulphate-reducing bacteria (1990) Asia-Pacific Biochemical Engineering Conference, pp. 292-295. , Kyungju, Korea
Somlev, V., Tishkov, S., Application of fluidized carrier to bacterial sulphate-reduction in industrial wastewaters purification (1992) Biotechnol. Tech., 6, pp. 91-96
Stucki, G., Hanselmann, K.W., Huerzeler, R.A., Biological sulfuric acid transformation: Reactor design and process optimization (1993) Biotechnol. Bioeng., 41, pp. 303-315
Uphaus, R.A., Grimm, D., Cork, D.J., Gypsum bioconversion to sulfur: A two-step microbiological process (1983) Dev. Ind. Microbiol., 24, pp. 435-442
Van Houten, R.T., Hulshoff Pol, L.W.H., Lettinga, G., Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source (1994) Biotechnol. Bioeng., 44, pp. 586-594
Van Houten, R.T., Van Der Spoel, H., Van Aelst, A.C., Hulshoff Pol, L.W.H., Lettinga, G., Biological sulphate reduction using synthesis gas as energy and carbon source (1996) Biotechnol. Bioeng., 50, pp. 136-144
Widdel, F., Bak, F., Gram-negative mesophilic sulfate-reducing bacteria (1992) The Prokaryotes, 4, pp. 3352-3378. , Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Eds) Springer-Verlag, Berlin
Widdel, F., Hansen, T.A., The dissimilatory sulfate- And sulfur-reducing bacteria (1992) The Prokaryotes, 1, pp. 583-624. , Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (Ed) Springer-Verlag, Berlin
Winter, G., Büchner, W., Schliebs, R., Büchel, K.H., (1989) Industrial Inorganic Chemistry, , VCH, Weinheim, Germany