[en] Organic electrode materials capable of reversible coordination/uncoordination of both mono- and multivalent ions in aqueous electrolytes are desired to develop safe, sustainable, and cost-effective water-based batteries. Here, we demonstrate the universality of bioinspired redox-active polymers bearing catechol pendants to reversibly coordinate/uncoordinate numerous cations including H+ and Li+ to Zn2+ and Al3+ with fast kinetics and ultralong cyclability. This unprecedented versatility is based on a catecholato–metal cation complex (Cat2–(mMn+)) charge storage mechanism that dictates the overall electrochemistry: formation of stronger complexes in M+ < M2+ < M3+ order resulted in a huge redox potential increment that might be used to tune the operating voltage of the battery.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège Center for Education and Research on Macromolecules (CERM), Belgium
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Patil, Nagaraj; IMDEA Energy Institute, Electrochemical Processes Unit, Móstoles, Spain
Mavrandonakis, Andreas; IMDEA Energy Institute, Electrochemical Processes Unit, Móstoles, Spain
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM), Belgium
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM), Belgium
Palma, Jesus; IMDEA Energy Institute, Electrochemical Processes Unit, Móstoles, Spain
Marcilla, Rebeca; IMDEA Energy Institute, Electrochemical Processes Unit, Móstoles, Spain
Language :
English
Title :
Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono‑, di‑, and trivalent) batteries
Publication date :
28 May 2019
Journal title :
ACS Applied Energy Materials
eISSN :
2574-0962
Publisher :
American Chemical Society, United States
Volume :
2
Issue :
5
Pages :
3035-3041
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique MINECO - Gobierno de Espana. Ministerio de Economia y Competitividad CM - Comunidad de Madrid
Funding text :
We thank the Spanish MINECO (formerly MICINN) through the MAT2015-64167-C2-1-R project, the “Fonds de la Recherche Scientifique” (FRS-FNRS, Belgium), and the TALENTO grant (2017-T1/AMB-5264) from Comunidad de Madrid for financial support. We acknowledge the
computing facilities of CSUC for providing resources that contributed to the research results reported within this paper.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K. Aqueous Rechargeable Li and Na Ion Batteries. Chem. Rev. 2014, 114, 11788-11827, 10.1021/cr500232y
Canepa, P.; Sai Gautam, G.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017, 117, 4287-4341, 10.1021/acs.chemrev.6b00614
Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods 2019, 3, 1800272, 10.1002/smtd.201800272
Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577-3613, 10.1021/cr100290v
Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652-657, 10.1038/451652a
Patil, N.; Jérôme, C.; Detrembleur, C. Recent Advances in the Synthesis of Catechol-Derived (Bio)Polymers for Applications in Energy Storage and Environment. Prog. Polym. Sci. 2018, 82, 34-91, 10.1016/j.progpolymsci.2018.04.002
Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S.-K.; Lim, H.-D.; Kang, K. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Adv. Mater. 2018, 30, 1704682, 10.1002/adma.201704682
Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem. 2018, 4, 2786-2813, 10.1016/j.chempr.2018.09.005
Haüpler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater. 2015, 5, 1402034, 10.1002/aenm.201402034
Gheytani, S.; Liang, Y.; Wu, F.; Jing, Y.; Dong, H.; Rao, K. K.; Chi, X.; Fang, F.; Yao, Y. An Aqueous Ca-Ion Battery. Adv. Sci. 2017, 4, 1700465, 10.1002/advs.201700465
Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal Quinone Electrodes for Long Cycle Life Aqueous Rechargeable Batteries. Nat. Mater. 2017, 16, 841-848, 10.1038/nmat4919
Fan, X.; Wang, F.; Ji, X.; Wang, R.; Gao, T.; Hou, S.; Chen, J.; Deng, T.; Li, X.; Chen, L. et al. A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angew. Chem., Int. Ed. 2018, 57, 7146-7150, 10.1002/anie.201803703
Hernández-Burgos, K.; Rodríguez-Calero, G. G.; Zhou, W.; Burkhardt, S. E.; Abrunã, H. D. Increasing the Gravimetric Energy Density of Organic Based Secondary Battery Cathodes Using Small Radius Cations (Li+ and Mg2+). J. Am. Chem. Soc. 2013, 135, 14532-14535, 10.1021/ja407273c
Kim, Y. J. o.; Wu, W.; Chun, S.-E.; Whitacre, J. F.; Bettinger, C. J. Catechol-Mediated Reversible Binding of Multivalent Cations in Eumelanin Half-Cells. Adv. Mater. 2014, 26, 6572-6579, 10.1002/adma.201402295
Liu, T.; Kim, K. C.; Lee, B.; Chen, Z.; Noda, S.; Jang, S. S.; Lee, S. W. Self-Polymerized Dopamine as an Organic Cathode for Li-and Na-Ion Batteries. Energy Environ. Sci. 2017, 10, 205-215, 10.1039/C6EE02641A
Kim, D. J.; Yoo, D.-J.; Otley, M. T.; Prokofjevs, A.; Pezzato, C.; Owczarek, M.; Lee, S. J.; Choi, J. W.; Stoddart, J. F. Rechargeable Aluminium Organic Batteries. Nat. Energy 2019, 4, 51-59, 10.1038/s41560-018-0291-0
Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H. et al. Polymer-Bound Pyrene-4,5,9,10-Tetraone for Fast-Charge and-Discharge Lithium-Ion Batteries with High Capacity. J. Am. Chem. Soc. 2012, 134, 19694-19700, 10.1021/ja306663g
Patil, N.; Aqil, M.; Aqil, A.; Ouhib, F.; Marcilla, R.; Minoia, A.; Lazzaroni, R.; Jérôme, C.; Detrembleur, C. Integration of Redox-Active Catechol Pendants into Poly(Ionic Liquid) for the Design of High-Performance Lithium-Ion Battery Cathodes. Chem. Mater. 2018, 30, 5831-5835, 10.1021/acs.chemmater.8b02307
Milczarek, G.; Inganas, O. Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks. Science 2012, 335, 1468-1471, 10.1126/science.1215159
Krogsgaard, M.; Nue, V.; Birkedal, H. Mussel-Inspired Materials: Self-Healing through Coordination Chemistry. Chem.-Eur. J. 2016, 22, 844-857, 10.1002/chem.201503380
Chen, X. C.; Wong, D. T.; Yakovlev, S.; Beers, K. M.; Downing, K. H.; Balsara, N. P. Effect of Morphology of Nanoscale Hydrated Channels on Proton Conductivity in Block Copolymer Electrolyte Membranes. Nano Lett. 2014, 14, 4058-4064, 10.1021/nl501537p
Lin, Q.; Li, Q.; Batchelor-McAuley, C.; Compton, R. G. Two-Electron, Two-Proton Oxidation of Catechol: Kinetics and Apparent Catalysis. J. Phys. Chem. C 2015, 119, 1489-1495, 10.1021/jp511414b
Jayalakshmi, M.; Mohan Rao, M.; Scholz, F. Electrochemical Behavior of Solid Lithium Manganate (LiMn2O4) in Aqueous Neutral Electrolyte Solutions. Langmuir 2003, 19, 8403-8408, 10.1021/la0340448
Zhang, H.; Yu, X.; Braun, P. V. Three-Dimensional Bicontinuous Ultrafast-Charge and-Discharge Bulk Battery Electrodes. Nat. Nanotechnol. 2011, 6, 277-281, 10.1038/nnano.2011.38
Sterby, M.; Emanuelsson, R.; Huang, X.; Gogoll, A.; Strømme, M.; Sjödin, M. Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries. Electrochim. Acta 2017, 235, 356-364, 10.1016/j.electacta.2017.03.068
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.