[en] Organic electrode materials capable of reversible coordination/uncoordination of both mono- and multivalent ions in aqueous electrolytes are desired to develop safe, sustainable, and cost-effective water-based batteries. Here, we demonstrate the universality of bioinspired redox-active polymers bearing catechol pendants to reversibly coordinate/uncoordinate numerous cations including H+ and Li+ to Zn2+ and Al3+ with fast kinetics and ultralong cyclability. This unprecedented versatility is based on a catecholato–metal cation complex (Cat2–(mMn+)) charge storage mechanism that dictates the overall electrochemistry: formation of stronger complexes in M+ < M2+ < M3+ order resulted in a huge redox potential increment that might be used to tune the operating voltage of the battery.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège Center for Education and Research on Macromolecules (CERM), Belgium
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Patil, Nagaraj; IMDEA Energy Institute, Electrochemical Processes Unit, Móstoles, Spain
Mavrandonakis, Andreas; IMDEA Energy Institute, Electrochemical Processes Unit, Móstoles, Spain
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM), Belgium
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM), Belgium
Palma, Jesus; IMDEA Energy Institute, Electrochemical Processes Unit, Móstoles, Spain
Marcilla, Rebeca; IMDEA Energy Institute, Electrochemical Processes Unit, Móstoles, Spain
Language :
English
Title :
Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono‑, di‑, and trivalent) batteries
Publication date :
28 May 2019
Journal title :
ACS Applied Energy Materials
eISSN :
2574-0962
Publisher :
American Chemical Society, United States
Volume :
2
Issue :
5
Pages :
3035-3041
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique MINECO - Gobierno de Espana. Ministerio de Economia y Competitividad CM - Comunidad de Madrid
Funding text :
We thank the Spanish MINECO (formerly MICINN) through the MAT2015-64167-C2-1-R project, the “Fonds de la Recherche Scientifique” (FRS-FNRS, Belgium), and the TALENTO grant (2017-T1/AMB-5264) from Comunidad de Madrid for financial support. We acknowledge the
computing facilities of CSUC for providing resources that contributed to the research results reported within this paper.
Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K. Aqueous Rechargeable Li and Na Ion Batteries. Chem. Rev. 2014, 114, 11788-11827, 10.1021/cr500232y
Canepa, P.; Sai Gautam, G.; Hannah, D. C.; Malik, R.; Liu, M.; Gallagher, K. G.; Persson, K. A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017, 117, 4287-4341, 10.1021/acs.chemrev.6b00614
Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y. Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods 2019, 3, 1800272, 10.1002/smtd.201800272
Yang, Z.; Zhang, J.; Kintner-Meyer, M. C. W.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical Energy Storage for Green Grid. Chem. Rev. 2011, 111, 3577-3613, 10.1021/cr100290v
Armand, M.; Tarascon, J.-M. Building Better Batteries. Nature 2008, 451, 652-657, 10.1038/451652a
Patil, N.; Jérôme, C.; Detrembleur, C. Recent Advances in the Synthesis of Catechol-Derived (Bio)Polymers for Applications in Energy Storage and Environment. Prog. Polym. Sci. 2018, 82, 34-91, 10.1016/j.progpolymsci.2018.04.002
Lee, S.; Kwon, G.; Ku, K.; Yoon, K.; Jung, S.-K.; Lim, H.-D.; Kang, K. Recent Progress in Organic Electrodes for Li and Na Rechargeable Batteries. Adv. Mater. 2018, 30, 1704682, 10.1002/adma.201704682
Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem. 2018, 4, 2786-2813, 10.1016/j.chempr.2018.09.005
Haüpler, B.; Wild, A.; Schubert, U. S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater. 2015, 5, 1402034, 10.1002/aenm.201402034
Gheytani, S.; Liang, Y.; Wu, F.; Jing, Y.; Dong, H.; Rao, K. K.; Chi, X.; Fang, F.; Yao, Y. An Aqueous Ca-Ion Battery. Adv. Sci. 2017, 4, 1700465, 10.1002/advs.201700465
Liang, Y.; Jing, Y.; Gheytani, S.; Lee, K.-Y.; Liu, P.; Facchetti, A.; Yao, Y. Universal Quinone Electrodes for Long Cycle Life Aqueous Rechargeable Batteries. Nat. Mater. 2017, 16, 841-848, 10.1038/nmat4919
Fan, X.; Wang, F.; Ji, X.; Wang, R.; Gao, T.; Hou, S.; Chen, J.; Deng, T.; Li, X.; Chen, L. et al. A Universal Organic Cathode for Ultrafast Lithium and Multivalent Metal Batteries. Angew. Chem., Int. Ed. 2018, 57, 7146-7150, 10.1002/anie.201803703
Hernández-Burgos, K.; Rodríguez-Calero, G. G.; Zhou, W.; Burkhardt, S. E.; Abrunã, H. D. Increasing the Gravimetric Energy Density of Organic Based Secondary Battery Cathodes Using Small Radius Cations (Li+ and Mg2+). J. Am. Chem. Soc. 2013, 135, 14532-14535, 10.1021/ja407273c
Kim, Y. J. o.; Wu, W.; Chun, S.-E.; Whitacre, J. F.; Bettinger, C. J. Catechol-Mediated Reversible Binding of Multivalent Cations in Eumelanin Half-Cells. Adv. Mater. 2014, 26, 6572-6579, 10.1002/adma.201402295
Liu, T.; Kim, K. C.; Lee, B.; Chen, Z.; Noda, S.; Jang, S. S.; Lee, S. W. Self-Polymerized Dopamine as an Organic Cathode for Li-and Na-Ion Batteries. Energy Environ. Sci. 2017, 10, 205-215, 10.1039/C6EE02641A
Kim, D. J.; Yoo, D.-J.; Otley, M. T.; Prokofjevs, A.; Pezzato, C.; Owczarek, M.; Lee, S. J.; Choi, J. W.; Stoddart, J. F. Rechargeable Aluminium Organic Batteries. Nat. Energy 2019, 4, 51-59, 10.1038/s41560-018-0291-0
Nokami, T.; Matsuo, T.; Inatomi, Y.; Hojo, N.; Tsukagoshi, T.; Yoshizawa, H.; Shimizu, A.; Kuramoto, H.; Komae, K.; Tsuyama, H. et al. Polymer-Bound Pyrene-4,5,9,10-Tetraone for Fast-Charge and-Discharge Lithium-Ion Batteries with High Capacity. J. Am. Chem. Soc. 2012, 134, 19694-19700, 10.1021/ja306663g
Patil, N.; Aqil, M.; Aqil, A.; Ouhib, F.; Marcilla, R.; Minoia, A.; Lazzaroni, R.; Jérôme, C.; Detrembleur, C. Integration of Redox-Active Catechol Pendants into Poly(Ionic Liquid) for the Design of High-Performance Lithium-Ion Battery Cathodes. Chem. Mater. 2018, 30, 5831-5835, 10.1021/acs.chemmater.8b02307
Milczarek, G.; Inganas, O. Renewable Cathode Materials from Biopolymer/Conjugated Polymer Interpenetrating Networks. Science 2012, 335, 1468-1471, 10.1126/science.1215159
Krogsgaard, M.; Nue, V.; Birkedal, H. Mussel-Inspired Materials: Self-Healing through Coordination Chemistry. Chem.-Eur. J. 2016, 22, 844-857, 10.1002/chem.201503380
Chen, X. C.; Wong, D. T.; Yakovlev, S.; Beers, K. M.; Downing, K. H.; Balsara, N. P. Effect of Morphology of Nanoscale Hydrated Channels on Proton Conductivity in Block Copolymer Electrolyte Membranes. Nano Lett. 2014, 14, 4058-4064, 10.1021/nl501537p
Lin, Q.; Li, Q.; Batchelor-McAuley, C.; Compton, R. G. Two-Electron, Two-Proton Oxidation of Catechol: Kinetics and Apparent Catalysis. J. Phys. Chem. C 2015, 119, 1489-1495, 10.1021/jp511414b
Jayalakshmi, M.; Mohan Rao, M.; Scholz, F. Electrochemical Behavior of Solid Lithium Manganate (LiMn2O4) in Aqueous Neutral Electrolyte Solutions. Langmuir 2003, 19, 8403-8408, 10.1021/la0340448
Zhang, H.; Yu, X.; Braun, P. V. Three-Dimensional Bicontinuous Ultrafast-Charge and-Discharge Bulk Battery Electrodes. Nat. Nanotechnol. 2011, 6, 277-281, 10.1038/nnano.2011.38
Sterby, M.; Emanuelsson, R.; Huang, X.; Gogoll, A.; Strømme, M.; Sjödin, M. Characterization of PEDOT-Quinone Conducting Redox Polymers for Water Based Secondary Batteries. Electrochim. Acta 2017, 235, 356-364, 10.1016/j.electacta.2017.03.068