SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Thaljaoui, Rachid; SUPRATECS, Department of Electrical Engineering and Computer Science (B28), University of Liege, Belgium, Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, Poland, Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
Pękała, Marek; Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, Poland
Fagnard, Jean-François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Vanderbemden, Philippe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
Effect of Ag substitution on structural, magnetic and magnetocaloric properties of Pr0.6Sr0.4– xAgxMnO3 manganites
Guo, Z B, Du, Y W, Zhu, J S, Huang, H, Ding, W P, Feng, D, Large magnetic entropy change in perovskite-type manganese oxides. Phys. Rev. Lett., 78, 1997, 1142.
Ramirez, A P, Colossal magnetoresistance. J. Phys.: Condens. Matter, 9, 1997, 8171.
Millis, A J, Shraiman, B I, Mueller, R, Dynamic Jahn-Teller effect and colossal magnetoresistance in La1–xSrxMnO3. Phys. Rev. Lett., 77, 1996, 175.
Manosa, L I, Planes, A, Acet, M, Manosa, L I, Advanced materials for solid-state refrigeration. J. Mater. Chem. A, 1, 2013, 4925.
Li, L, Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals. Chin. Phys. B, 25, 2016, 037502.
Tishin, A M, Handbook of Magnetic Materials, 1999, 12.
Gschneidner, K A Jr, Pecharsky, V K, Tsokol, A O, Recent developments in magnetocaloric materials. Rep. Prog. Phys., 68, 2005, 1479.
Li, L W, Yuan, Y, Zhang, Y K, Namiki, T, Nishimura, K, Pottgen, R, Zhou, S, Giant low field magnetocaloric effect and field-induced metamagnetic transition in TmZn. Appl. Phys. Lett., 107, 2015, 132401.
Li, L W, Wang, J, Su, K P, Huo, D X, Qi, Y, Magnetic properties and magnetocaloric effect in metamagnetic RE2Cu2O5 (RE=Dy and Ho) cuprates. J. Alloys Compd., 658, 2016, 500.
Zhang, Y K, Yang, Y, Xu, X, Hou, L, Ren, Z M, Li, X, Wilde, G, Large reversible magnetocaloric effect in RE2Cu2In (RE= Er and Tm) and enhanced refrigerant capacity in its composite materials. J. Phys. D: Appl. Phys., 49, 2016, 145002.
Li, L, Niehaus, O, Kersting, M, Pottgen, R, Particle size dependence of the magnetic and magneto-caloric properties of HoCrO3. Appl. Phys. Lett., 104, 2014, 092416.
Zhang, Y K, Yang, B J, Wilde, G, Magnetic properties and magnetocaloric effect in ternary REAgAl (RE=Er and Ho) intermetallic compounds. J. Alloys Compd., 12, 2015, 619.
Fujieda, S, Fujita, A, Fukamichi, K, Large magnetocaloric effect in La(FexSi1–x)13 itinerant-electron metamagnetic compounds. Appl. Phys. Lett., 81, 2002, 1276.
Guo, Z B, Du, Y W, Zhu, J S, Huang, H, Ding, W P, Feng, D, Bose-Einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett., 78, 1997, 1142.
Phan, M H, Yu, S C, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater., 308, 2007, 325.
Millis, A J, Littlewood, P B, Shraiman, B I, Double exchange alone does not explain the resistivity of La1–xSrxMnO3. Phys. Rev. Lett., 74, 1995, 5144.
Gamzatov, A G, Batdalov, A B, Aliev, A M, Khanov, L N, Ahmadvand, H, Salamati, H, Kameli, P, Magnetocaloric effect in Pr1–xAgxMnO3 manganites. JETP Letters, 91, 2010, 341.
Vadnala, S, Pal, P, Asthana, S, Influence of A-site cation disorder on structural and magnetocaloric properties of Nd0.7–xLaxSr0.3MnO3 (x=0.0, 0.1, 0.2 & 0.3). J. Rare Earths, 33, 2015, 1072.
Chávez-Guerrero, L, Medina-Lott, B, Cienfuegos, R F, Garza-Navarro, M A, Vannier, R N, Ringuedé, A, Hinojosa, M, Cassir, M, Synthesis and characterization of LaNixCo1–xO3: Role of microstructure on magnetic properties. J. Rare Earths, 33, 2015, 277.
Thaljaoui, R, Boujelben, W, Pękała, M, Pękała, K, Cheikhrouhou-Koubaa, W, Cheikhrouhou, A, Magnetocaloric study of monovalent-doped manganites Pr0.6Sr0.4–xNaxMnO3 (x=0–0.2). J. Mater. Sci., 48, 2013, 3894.
Thaljaoui, R, Boujelben, W, Pękała, M, Pękała, K, Fagnard, J F, Vanderbemden, P, Donten, M, Cheikhrouhou, A, Magnetocaloric effect of monovalent K doped manganites Pr0.6Sr0.4–xKxMnO3 (x=0 to 0.2). J. Magn. Magn. Mater., 352, 2014, 6.
Thaljaoui, R, Boujelben, W, Pękała, M, Pękała, K, Antonowicz, J, Fagnard, J F, Vanderbemden, P, Dąbrowska, S, Mucha, J, Structural, magnetic and magneto-transport properties of monovalent doped manganite Pr0.55K0.05Sr0.4MnO3. J. Alloys Compd., 611, 2014, 427.
Thaljaoui, R, Boujelben, W, Pękała, M, Pękała, K, Mucha, J, Cheikhrouhou, A, Structural, magnetic and transport study of monovalent Na-doped manganite Pr0.55Na0.05Sr0.4MnO3. J. Alloys Compd., 558, 2013, 236.
Rietveld, H M, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst., 2, 1969, 65.
Roisnel T, Rodriguez-Carvajal J. Computer program FULLPROF, LLB-LCSIM. May 2003.
Shanon, R D, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A, 32, 1976, 751.
Knížek, K, Jirák, Z, Pollert, E, Zounová, F, Vratislav, S, Structure and magnetic properties of Pr1–xSrxMnO3 perovskites. J. Solid State Chem., 100, 1992, 292.
Choithrani, R, Bhat, M A, Gaur, N K, Influence of silver doping on the magnetoresistance and temperature coefficient of resistance in Pr0.67Sr0.33MnO3. J. Magn. Magn. Mater., 361, 2014, 19.
Roessler, S, Nair Harikrishnan, S, Roessler, U K, Kumar, C M N, Suja, Elizabeth, Wirth, S, Ferromagnetic transition and specific heat of Pr0.6Sr0.4MnO3. Phys. Rev. B, 84, 2011, 184422.
Dutta, A, Gayathri, N, Ranganathan, R, Effect of particle size on the magnetic and transport properties of La0.875Sr0.125MnO3. Phys. Rev. B, 68, 2003, 054432.
Daivajna, M D, Ashok, R, Okram, G S, Electrical, thermal and magnetic studies on Bi-substituted LSMO manganites. J. Magn. Magn. Mater., 388, 2015, 90.
Andrade, V M, Caraballo Vivas, R J, Pedro, S S, Tedesco, J C G, Rossi, A L, Coelho, A A, Rocco, D L, Reis, M S, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality. Acta Mater., 102, 2016, 49.
Fan, J Y, Pi, L, Zhang, L, Tong, W, Ling, L S, Hong, B, Shi, Y G, Zhang, W C, Lu, D, Zhang, Y H, Magnetic and magnetocaloric properties of perovskite manganite Pr0.55Sr0.45MnO3. Physica B, 406, 2011, 2289.
Gokhan Ünlü, C, Emre Tanıs, Y, Burak Kaynar, M, Simsek, T, Ozcan, S, Magnetocaloric effect in La0.7 NdxBa(0.3–x)MnO3 (x=0, 0.05, 0.1) perovskite manganites. J. Alloys Compd., 704, 2017, 58.
Xu, L S, Chen, L L, Fan, J Y, Bärner, K, Zhang, L, Zhu, Y, Pi, L, Zhang, Y H, Shi, D N, Room-temperature large magnetocaloric effect and critical behavior in La0.6Dy0.1Sr0.3 MnO3. Ceram. Int., 42, 2016, 8234.
Franco, V, Blazquez, J S, Ingale, B, Conde, A, The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models. Annu. Rev. Mater. Res., 42, 2012, 305.
Aliev, A M, Gamzatov, A G, Batdalov, A B, Mankevich, A S, Korsakov, I E, Structure and magnetocaloric properties of La1–xKxMnO3 manganites. Physica B, 406, 2011, 885.
Oesterreicher, H, Parker, F T, Magnetic cooling near Curie temperatures above 300 K. J. Appl. Phys., 55, 1984, 4334.
Franco, V, Blazquez, J S, Conde, A, Field dependence of the magnetocaloric effect in materials with a second order phase transition: A master curve for the magnetic entropy change. Appl. Phys. Lett., 89, 2006, 222512.
Bonilla, C M, Herrero-Albillos, J, Bartolome, F, Garcia, L M, Parra-Borderias, M, Franco, V, Universal behavior for magnetic entropy change in magnetocaloric materials: An analysis on the nature of phase transitions. Phys. Rev. B, 81, 2010, 224424.
Banerjee, B K, On a generalised approach to first and second order magnetic transitions. J. Phys. Lett., 12, 1964, 16.
Phan, T L, Ho, T A, Manh, T V, Dang, N T, Jung, C U, Lee, B W, Thanh, T D, Y-doped La0.7Ca0.3MnO3 manganites exhibiting a large magnetocaloric effect and the crossover of first-order and second-order phase transitions. J. Appl. Phys., 118, 2015, 143902.