Fourth Positive Group (4PG) band system; MAVEN IUVS; cross section; 1356; airglow; Mars; Venus; dissociation
Abstract :
[en] We have measured the 30 and 100 eV far ultraviolet (FUV) emission cross sections of the optically allowed Fourth Positive Group (4PG) band system (A 1 Π → X 1 Σ + ) of CO and the optically forbidden O (5S → 3P) 135.6 nm atomic transition by electron-impact-induced-fluorescence of CO and CO2 . We present a model excitation cross section from threshold to high energy for the A 1Π state, including cascade by electron impact on CO. The A 1Π state is perturbed by triplet states leading to an extended FUV glow from electron excitation of CO. We derive a model FUV spectrum of the 4PG band system from dissociative excitation of CO2 , an important process observed on Mars and Venus. Our unique experimental setup consists of a large vacuum chamber housing an electron gun system and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission Imaging Ultraviolet Spectrograph optical engineering unit, operating in the FUV (110–170 nm). The determination of the total OI ( 5S o ) at 135.6 nm emission cross section is accomplished by measuring the cylindrical glow pattern of the metastable emission from electron impact by imaging the glow intensity about the electron beam from nominally zero to ~400 mm distance from the electron beam. The study of the glow pattern of O i (135.6 nm) from dissociative excitation of CO and CO 2 indicates that the OI (5 S) state has a kinetic energy of ~1 eV by modeling the radial glow pattern with the published lifetime of 180 μs for the OI (5 S) stat.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Ajello, J. M.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Malone, C. P.; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
Evans, J. S.; Computational Physics Inc., Springfield, VA, United States
Holsclaw, G. M.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Hoskins, A. C.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Jain, S. K.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
McClintock, W. E.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Liu, X.; Planetary and Space Science Division, Space Environment Technology, Pacific Palisades, CA, United States
Veibell, V.; Computational Physics Inc., Springfield, VA, United States
Deighan, J.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Lo, D. Y.; Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
Schneider, N.; Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, United States
Aarts, J. F. M., & de Heer, F. J. (1970). Emission of radiation in the vacuum ultraviolet by impact of electrons on carbon monoxide. The Journal of Chemical Physics, 52(10), 5354–5360. https://doi.org/10.1063/1.1672785
Ajello, J., Malone, C. P., McClintock, W., Hoskins, A., & Eastes, R. (2017). Electron impact measurement of the 100 eV emission Cross section and lifetime of the Lyman-Birge-Hopfield band system of N 2 : Direct excitation and cascading. Journal of Geophysical Research: Space Physics, 122, 6776–6790. https://doi.org/10.1002/2017JA024087
Ajello, J., Vattipalle, V. P., & Osinski, G. (2002). UV spectroscopy by electron impact for planetary astronomy and astrophysics. In M. Mohan (Ed.), Current developments in atomic, molecular physics (pp. 143–149). Cambridge, MA: Academic Press.
Ajello, J. M. (1971a). Emission cross sections of CO by electron impact in the interval 1260-5000. The Journal of Chemical Physics, 55(7), 3158–3168. https://doi.org/10.1063/1.1676563
Ajello, J. M. (1971b). Emission cross sections of CO 2 by electron impact in the interval 1260-5000. The Journal of Chemical Physics, 55(7), 3169–3177. https://doi.org/10.1063/1.1676564
Ajello, J. M. (1984). The EUV spectrum of H 2 O by electron impact. Geophysical Research Letters, 11(12), 1195–1198. https://doi.org/10.1029/GL011i012p01195
Ajello, J. M., & Ciocca, M. (1996). Fast nitrogen atoms from dissociative excitation of N 2 by electron impact. Journal of Geophysical Research, 101(E8), 18,953–18,960. https://doi.org/10.1029/96JE01827
Ajello, J. M., Mangina, R. S., & Meier, R. R. (2011). UV molecular spectroscopy from electron impact for applications to planetary atmospheres and astrophysics. In Y. Hatano, Y. Katsumura, & A. Mozumder (Eds.), Charged particle and photon interactions with matter (pp. 761–804). Boca Raton, FL: Taylor & Francis.
Allcock, G., & McConkey, J. W. (1976). Metastable fragment production following electron impact on CO 2 . Journal of Physics B: Atomic and Molecular Physics, 9(12), 2127–2139. https://doi.org/10.1088/0022-3700/9/12/025
Avakyan, S. V., Il'in, R. N., Lavrov, V. M., & Ogurtsiv, G. N. (1998). Collision processes and excitation of UV emission from planetary atmospheric gases: A handbook of cross sections. India: Gordon and Breach Science Publishers.
Barnett, S. M., Mason, N. J., & Newell, W. R. (1992). Dissociative excitation of metastable fragments by electron impact on carbonyl sulphide, carbon dioxide and carbon monoxide. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(6), 1307–1320. https://doi.org/10.1088/0953-4075/25/6/021
Barth, C. A., Hord, C. W., Pearce, J. B., Kelly, K. K., Anderson, G. P., & Stewart, A. I. (1971). Mariner 6 and 7 ultraviolet spectrometer experiment: Upper atmosphere data. Journal Geophysical Research, 76(10), 2213–2227. https://doi.org/10.1029/JA076i010p02213
Barth, C. A., Hord, C. W., Stewart, A. I., Lane, A. L., Dick, M. L., & Anderson, G. P. (1973). Mariner 9 ultraviolet spectrometer experiment: Seasonal variation of ozone on Mars. Science, 179(4075), 795–796. https://doi.org/10.1126/science.179.4075.795
Barth, C. A., Stewart, A. I., Hord, C. W., & Lane, A. L. (1972). Mariner 9 ultraviolet spectrometer experiment: Mars airglow spectroscopy and variations in Lyman alpha. Icarus, 17(2), 457–468. https://doi.org/10.1016/0019-1035(72)90011-5
Beegle, L. W., Ajello, J. M., James, G. K., Dziczek, D., & Alvarez, M. (1999). High resolution emission spectroscopy of the A 1 Π – X 1 Σ + fourth positive band system of CO excited by electron impact. Astronomy and Astrophysics, 347, 375–390.
Bertaux, J.-L., Korablev, O., Perrier, S., Quémerais, E., Montmessin, F., Leblanc, F., Lebonnois, S., Rannou, P., Lefèvre, F., Forget, F., Fedorova, A., Dimarellis, E., Reberac, A., Fonteyn, D., Chaufray, J. Y., & Guibert, S. (2006). SPICAM on Mars Express: Observing modes and overview of UV spectrometer data and scientific results. Journal of Geophysical Research, 111, E10S90. https://doi.org/10.1029/2006JE002690
Bertaux, J.-L., Nevejans, D., Korablev, O., Villard, E., Quémerais, E., Neefs, E., Montmessin, F., Leblanc, F., Dubois, J. P., Dimarellis, E., Hauchecorne, A., Lefèvre, F., Rannou, P., Chaufray, J. Y., Cabane, M., Cernogora, G., Souchon, G., Semelin, F., Reberac, A., Van Ransbeek, E., Berkenbosch, S., Clairquin, R., Muller, C., Forget, F., Hourdin, F., Talagrand, O., Rodin, A., Fedorova, A., Stepanov, A., Vinogradov, I., Kiselev, A., Kalinnikov, Y., Durry, G., Sandel, B., Stern, A., & Gérard, J. C. (2007). SPICAV on Venus Express: Three spectrometers to study the global structure and composition of the Venus atmosphere. Planetary and Space Science, 55(12), 1673–1700. https://doi.org/10.1016/j.pss.2007.01.016
Biémont, E., & Zeippen, C. J. (1992). Electric dipole transitions in atomic oxygen and the lifetimes of the 2p 3 ( 4 S o )3s 5 S o and 3 S o states. Astronomy and Astrophysics, 265, 850–856.
Campbell, L., & Brunger, M. J. (2013). Modeling of plasma processes in cometary and planetary atmospheres. Plasma Sources Science and Technology, 22(1), 013002. https://doi.org/10.1088/0963-0252/22/1/013002
Campbell, L., & Brunger, M. J. (2016). Electron collisions in atmospheres. International Reviews in Physical Chemistry, 35(2), 297–351. https://doi.org/10.1080/0144235X.2016.1179002
Chaufray, J.-L., Bertaux, J. L., & Leblanc, F. (2012). First observation of the Venus UV dayglow at limb from SPICAV/VEX. Geophysical Research Letters, 39, L20201. https://doi.org/10.1029/2012GL053626
Ciocca, M., Kanik, I., & Ajello, J. M. (1997). High-resolution studies of extreme-ultraviolet emission from CO by electron impact. Physical Review A, 55(5), 3547–3556. https://doi.org/10.1103/PhysRevA.55.3547
Cox, C., Gérard, J. C., Hubert, B., Bertaux, J. L., & Bougher, S. W. (2010). Mars ultraviolet dayglow variability: SPICAM observations and comparison with airglow model. Journal of Geophysical Research, 115, E04010. https://doi.org/10.1029/2009JE003504
Deighan, J., Chaffin, M. S., Chaufray, J. Y., Stewart, A. I. F., Schneider, N. M., Jain, S. K., Stiepen, A., Crismani, M., McClintock, W. E., Clarke, J. T., Holsclaw, G. M., Montmessin, F., Eparvier, F. G., Thiemann, E. M. B., Chamberlin, P. C., & Jakosky, B. M. (2015). MAVEN IUVS observation of the hot oxygen corona at Mars. Geophysical Research Letters, 42, 9009–9014. https://doi.org/10.1002/2015GL065487
Durrance, S. T. (1980). The carbon monoxide fourth positive bands in the Venus dayglow, (PhD thesis). Boulder, CO: University of Colorado.
Durrance, S. T. (1981). The carbon monoxide fourth positive bands in the Venus dayglow: 1. Synthetic spectra. Journal of Geophysical Research, 86(A11), 9115–9124. https://doi.org/10.1029/JA086iA11p09115
Evans, J. S., Stevens, M. H., Lumpe, J. D., Schneider, N. M., Stewart, A. I. F., Deighan, J., Jain, S. K., Chaffin, M. S., Crismani, M., Stiepen, A., McClintock, W. E., Holsclaw, G. M., Lefèvre, F., Lo, D. Y., Clarke, J. T., Eparvier, F. G., Thiemann, E. M. B., Chamberlin, P. C., Bougher, S. W., Bell, J. M., & Jakosky, B. M. (2015). Retrieval of CO 2 and N 2 in the Martian atmosphere using dayglow observations by IUVS on MAVEN”, (2015). Geophysical Research Letters, 42, 9040–9049. https://doi.org/10.1002/2015GL0065489
Feldman, P. D., A'Hearn, M. F., Bertaux, J. L., Feaga, L. M., Keeney, B. A., Knight, M. M., Noonan, J., Parker, J. W., Schindhelm, E., Steffl, A. J., Stern, S. A., Vervack, R. J., & Weaver, H. A. (2018). FUV spectral signatures of molecules and the evolution of the gaseous coma of Comet 67P/Churyumov–Gerasimenko. Astronomy Journal, 155(1), 9. https://doi.org/10.3847/1538-3881/aa9bf2
Feldman, P. D., Burgh, E. B., Durrance, S. T., & Davidsen, A. F. (2000). Far-ultraviolet spectroscopy of Venus and Mars at 4Å resolution with the Hopkins ultraviolet telescope on Astro-2. The Astrophysical Journal, 538(1), 395–400. https://doi.org/10.1086/309125
Fox, J. L. (2004). Advances in the aeronomy of Venus and Mars. Advances in Space Research, 33(2), 132–139. https://doi.org/10.1016/j.asr.2003.08.014
Fox, J. L., & Dalgarno, A. (1979). Ionization, luminosity and heating of the upper atmosphere of Mars. Journal of Geophysical Research, 84(A12), 7315. https://doi.org/10.1029/JA084iA12p07315
Fox, J. L., & Hać, A. B. (2009). Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method. Icarus, 204(2), 527–544. https://doi.org/10.1016/j.icarus.2009.07.005
Fox, J. L., & Hać, A. B. (2018). Escape of O( 3 P), O( 1 D), and O( 1 S) from the Martian atmosphere. Icarus, 300, 411–439. https://doi.org/10.1016/j.icarus.2017.08.041
Gentieu, E. P., & Mentall, J. E. (1973). Cross sections for production of the CO (A 1 Π–X 1 Σ) Fourth Positive band system and O( 3 S) by photodissociation of CO 2 . The Journal of Chemical Physics, 58(11), 4803–4815. https://doi.org/10.1063/1.1679063
Gérard, J.-C., Hubert, B., Gustin, J., Shematovich, V., Bisikalo, D. V., Esposito, L., & Gladstone, G. R. (2011). EUV spectroscopy of the Venus EUV dayglow with UVIS on Cassini. Icarus, 211(1), 70–80. https://doi.org/10.1016/j.icarus.2010.09.020
Gronoff, G., Simon Wedlund, C., Mertens, C. J., Barthélemy, M., Lillis, R. J., & Witasse, O. (2012). Computing uncertainties in ionosphere-airglow models: II. The Martian airglow. Journal of Geophysical Research, 117, A05309. https://doi.org/10.1029/2011JA017308
Gronoff, G., Simon Wedlund, C., Mertens, C. J., & Lillis, R. J. (2012). Computing uncertainties in ionosphere-airglow models: I. Electron flux and species production uncertainties for Mars. Journal of Geophysical Research, 117, A05306. https://doi.org/10.1029/2011JA016930
Hubert, B., Gérard, J.-C., Gustin, J., Shematovich, V. I., Bisikalo, D. V., Stewart, A. I., & Gladstone, G. R. (2010). UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby. Icarus, 207(2), 549–557. https://doi.org/10.1016/j.icarus.2009.12.029
Itikawa, Y. (2002). Cross sections for electron collisions with carbon dioxide. Journal of Physical and Chemical Reference Data, 31(3), 749–767. https://doi.org/10.1063/1.1481879
Itikawa, Y. (2015). Cross sections for electron collisions with carbon monoxide. Journal of Physical and Chemical Reference Data, 44(1), 03105. https://doi.org/10.1063/1.4913926
Jain, S., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. H., Chaffin, M. S., Crismani, M., Mcclintock, W. E., & Clarke, J. T. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophysical Research Letters, 42, 9023–9030. https://doi.org/10.1002/2015GL065419(2015)
Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson, L., Baird, D., Baker, D., Bartlett, R., Benna, M., Bougher, S., Brain, D., Carson, D., Cauffman, S., Chamberlin, P., Chaufray, J. Y., Cheatom, O., Clarke, J., Connerney, J., Cravens, T., Curtis, D., Delory, G., Demcak, S., DeWolfe, A., Eparvier, F., Ergun, R., Eriksson, A., Espley, J., Fang, X., Folta, D., Fox, J., Gomez-Rosa, C., Habenicht, S., Halekas, J., Holsclaw, G., Houghton, M., Howard, R., Jarosz, M., Jedrich, N., Johnson, M., Kasprzak, W., Kelley, M., King, T., Lankton, M., Larson, D., Leblanc, F., Lefevre, F., Lillis, R., Mahaffy, P., Mazelle, C., McClintock, W., McFadden, J., Mitchell, D. L., Montmessin, F., Morrissey, J., Peterson, W., Possel, W., Sauvaud, J. A., Schneider, N., Sidney, W., Sparacino, S., Stewart, A. I. F., Tolson, R., Toublanc, D., Waters, C., Woods, T., Yelle, R., & Zurek, R. (2015). The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Space Science Reviews, 195(1-4), 3–48. https://doi.org/10.1007/s11214-015-0139-x
James, G. K., Ajello, J. M., Kanik, I., Franklin, B., & Shemansky, D. E. (1992). The EUV emission spectrum of CO produced by electron impact at 200 eV. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(7), 1481–1496. https://doi.org/10.1088/0953-4075/25/7/019
Kanik, I., James, G. K., & Ajello, J. M. (1995). Medium-resolution studies of extreme-ultraviolet emission from CO by electron impact. The American Physical Society through the American Institute of Physics, 51, 2067.
Kanik, I., Noren, C., Makarov, O., Vatti Palle, P., Ajello, J., & Shemansky, D. (2003). Electron impact dissociative excitation of O 2 : II. Absolute emission cross sections of OI(130.4 nm) and OI(135.6 nm). Journal of Geophysical Research, 108(E11), 51256. https://doi.org/10.1029/2000JE001423
Kato, H., Kawahara, H., Hoshino, M., Tanaka, H., Brunger, M. J., & Kim, Y.-K. (2007). The Journal of Chemical Physics, 126(6), 064307. https://doi.org/10.1063/1.2434169
Kramida, A., Ralchenko, Y., Reader, J., & NIST ASD Team (2018). NIST Atomic Spectra Database (version 5.6.1), https://physics.nist.gov/asd[Fri Nov 16 2018]. Gaithersburg, MD: National Institute of Standards and Technology. https://doi.org/10.18434/T4W30F
Krasnopolsky, V. A., & Feldman, P. D. (2002). Far ultraviolet spectrum of Mars. Icarus, 160(1), 86–94. https://doi.org/10.1006/icar.2002.6949
Krauss, M., Mielczarek, S. R., Neumann, D., & Kuyatt, E. C. (1971). Mechanism for production of the fourth-positive band system of CO by electron impact on CO 2 . Journal of Geophysical Research, 76(16), 3733–3737. https://doi.org/10.1029/JA076i016p03733
Krupenie, P. H. (1966). “The band spectrum of carbon monoxide”, National Bureau of Standards, 1.
Kurucz, R. L. (1976). “The fourth positive system of carbon monoxide”, Smithson. Astrophys. Obs. Spec. Rep. 374.
Lawrence, G. M. (1970). Dissociative excitation of some oxygen-containing molecules—Lifetimes and electron-impact cross sections. Physical Review A, 2(2), 397–407. https://doi.org/10.1103/PhysRevA.2.397
Le Roy, R. J. (2017). RKR1: A computer program implementing the first-order RKR method for determining diatomic molecule potential energy functions. Journal of Quantitative Spectroscopy and Radiative Transfer, 186, 158–166. https://doi.org/10.1016/j.jqsrt.2016.03.030
Leblanc, F., Chaufray, J. Y., & Bertaux, J. L. (2007). On Martian nitrogen dayglow emission observed by the SPICAM UV spectrograph/Mars Express. Geophysical Research Letters, 34, L02206. https://doi.org/10.1029/2006GL028437
Leblanc, F., Chaufray, J. Y., Lilensten, L., Witasse, O., & Bertaux, J. L. (2006). Martian dayglow as seen by the SPICAM UV spectrograph on Mars Express. Journal of Geophysical Research, 111, E09S11. https://doi.org/10.1029/2005JE002664
Lefebvre-Brion, H., & Field, R. W. (1986). ’Perturbations in the spectra of diatomic molecules (p. 249). Orlando, FL: Academic Press.
Liu, X., Johnson, P. V., Malone, C. P., Young, J. A., Shemansky, D. E., & Kanik, I. (2009). Electron impact excitation and emission cross sections of the B' 1 Σ and D 1 Π u states and rotational dependence of photodissociation cross sections of the B' 1 Σu+ and D 1 Π u states. Journal of Physics B: Atomic, Molecular and Optical Physics, 42(18), 185203. https://doi.org/10.1088/0953-4075/42/18/185203
Liu, X., Shemansky, D. E., Ahmed, S. M., James, G. K., & Ajello, J. M. (1998). Electron-impact excitation and emission cross sections of the H 2 Lyman and Werner systems. Journal of Geophysical Research, 103(A11), 26,739–267,58. https://doi.org/10.1029/98JA02721
Liu, X., Shemansky, D. E., Johnson, P. V., Malone, C. P., Khakoo, M. A., & Kanik, I. (2012). Electron and photon dissociation cross sections of the H 2 singlet ungerade continua. Journal of Physics B, 45(1), 015201. https://doi.org/10.1088/0953-4075/45/1/015201
Lu, P.-F., Yan, L., Yu, Z.-Y., Gao, Y.-F., & Gao, T. (2013). An accurate calculation of potential energy curves and transition dipole moment for low-lying electronic states of CO. Communications in Theoretical Physics, 59(2), 193–198. https://doi.org/10.1088/0253-6102/59/2/11
Lupu, R. E., Feldman, P. D., Weaver, H. A., & Tozzi, G.-P. (2007). The fourth positive system of carbon monoxide in the Hubble Space Telescope spectra of comets. The Astrophysical Journal, 670(2), 1473–1484. https://doi.org/10.1086/522328
Makarov, O. P., Kanik, I., & Ajello, J. M. (2003). Electron impact dissociative excitation of O 2 : 1. Kinetic energy distributions of fast oxygen atoms. Journal of Geophysical Research, 108(E11), 5125. https://doi.org/10.1029/2000JE001422
Malone, C. P., Johnson, P. V., McConkey, J. W., Ajello, J. M., & Kanik, I. (2008). Dissociative excitation of N 2 O by electron impact. Journal of Physics B: Atomic, Molecular and Optical Physics, 41(9), 095201. https://doi.org/10.1088/0953-4075/41/9/095201
McClintock, W. E., Schneider, N., Hosclaw, G., Clarke, J. T., Hospkins, A., Stewart, I., Montmessin, F., Yelle, R., & Deighan, J. (2014). The Imaging Ultraviolet Spectrograph (IUVS) for the MAVEN mission. Space Science Reviews, 195(1-4), 75–124. https://doi.org/10.1007/s11214-014-0098-7
McConkey, J. W., Malone, C. P., Johnson, P. V., Winstead, C., McKoy, V., & Kanik, I. (2008). Electron impact dissociation of oxygen-containing molecules–A critical review. Physics Reports, 466(1-3), 1–103. https://doi.org/10.1016/j.physrep.2008.05.001
Misakian, M., Mumma, M. J., & Faris, J. F. (1975). Angular distributions, kinetic energy distributions, and excitation functions of fast metastable oxygen fragments following electron impact on CO 2 . The Journal of Chemical Physics, 62(9), 3442. https://doi.org/10.1063/1.430979
Morton, D. C., & Noreau, L. (1994). A compilation of electronic of electronic transtions in the CO molecule and the interpretation of some puzzling interstellar absorption features. The Astrophysical Journal Supplement Series, 95, 301–343. https://doi.org/10.1086/192100
Mumma, M. J., Stone, E. J., Borst, W. L., & Zipf, E. C. (1972). Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases: III. CO 2 . The Journal of Chemical Physics, 57(1), 68–75. https://doi.org/10.1063/1.1678019
Mumma, M. J., Stone, E. J., & Zipf, E. C. (1971). Excitation of the CO fourth positive band system by electron impact on CO and CO 2 . The Journal of Chemical Physics, 54(6), 2627–2634. https://doi.org/10.1063/1.1675223
Mumma, M. J., Stone, E. J., & Zipf, E. C. (1975). No-thermal rotational distribution of CO(A 1 Π) fragments produced by dissociative excitation of CO 2 by electron impact: III. CO 2 . Journal of Geophysical Research, 80(1), 161–167. https://doi.org/10.1029/JA080i001p00161
Mumma, M. J., & Zipf, E. C. (1971). Dissociative excitation of vacuum ultraviolet emission features by electron impact on molecular gases: I. H 2 and O 2 . The Journal of Chemical Physics, 55(4), 1661–1669. https://doi.org/10.1063/1.1676294
Noren, C., Kanik, I., Ajello, J. M., McCartney, P., Makarov, O. P., McClintock, W. E., & Drake, V. A. (2001). Emission cross section of OI (135.6 nm) at 100 eV resulting from electron-impact dissociative excitation of O 2 . Geophysical Research Letters, 28(7), 1379–1382. https://doi.org/10.1029/2000GL012577
Ristić, M. M., Poparić, G. B., & Belić, D. S. (2011). Excitation of the a 3 Π state of CO by electron impact. Physical Review A, 83(4), 042714. https://doi.org/10.1103/PhysRevA.83.042714
Schneider, N. M., Deighan, J. I., Jain, S. K., Stiepen, A., Stewart, A. I., Larson, D., Mitchell, D. L., Mazelle, C., Lee, C. O., Lillis, R. J., & Evans, J. S. (2015). The discovery of diffuse aurora on Mars. Science, 350(6251). https://doi.org/10.1126/science.aad0313
Schulman, M. B., Sharpton, F. A., Chung, S., Lin, C. C., & Anderson, L. W. (1985). Emission from oxygen atoms produced by electron-impact dissociative excitation of oxygen molecules. Physical Review A, 32, 2100–2116. https://doi.org/10.1103/PhysRevA.32.2100
Shemansky, D. E., Ajello, J. M., Hall, D. T., & Franklin, B. (1985). Vacuum ultraviolet studies of electron impact of helium: Excitation of He(n 1Pο ) Rydberg series and ionization-excitation of He + (nP) Rydberg series. The Astrophysical Journal, 296, 774–783.
Shematovich, V. I., Bisikalo, D. V., Gérard, J. C., Cox, C., Bougher, S. W., & Leblanc, F. (2008). Monte Carlo model of electron transport for the calculation of Mars dayglow emissions. Journal of Geophysical Research, 113, E02011. https://doi.org/10.1029/2007JE002938
Shirai, T., Tabata, T., & Tawara, H. (2001). Analytic cross sections for electron collisions with CO, CO 2 , and H 2 O relevant to edge plasma impurities. Atomic Data and Nuclear Data Tables, 79(1), 143–184. https://doi.org/10.1006/adnd.2001.0866
Simmons, J. D., Bass, A. M., & Tilford, S. G. (1969). The fourth positive system of carbon monoxide observed in absorption at high resolution in the vacuum ultraviolet region. The Astrophysical Journal, 155, 345–358.
Simon, C., Lillensten, J., Moen, J., Holmesy, J., Ogawa, Y., Oskavik, K., & Denig, K. (2007). A new coupled electron/proton transport code—Comparisons to observations. Annales de Geophysique, 25(3), 661–673. https://doi.org/10.5194/angeo-25-661-2007
Simon, C., Witasse, O., Leblance, F., Gronoff, G., & Bertaux, J. L. (2009). Dayglow on Mars: Kinetic modeling with Spicam UV Limb data. Planetary and Space Science, 57(8-9), 1008–1021. https://doi.org/10.1016/j.pss.2008.08.012
Slanger, T. G., Cravens, T. E., Crovisier, J., Miller, S., & Strobel, D. F. (2008). Photoemission phenomena in the solar system. Space Science Reviews, 139(1-4), 267–310. https://doi.org/10.1007/s11214-008-9387-3
Spielfiedel, A., Tchang-Brillet, W.-Ü. L., Dayou, F., & Feautrier, N. (1999). Ab initio calculation of the dipole transition moment and band oscillator strengths of the CO (A-X) transition. Astronomy Astrophysics, 346, 699–704.
Stevens, M., Evans, J. S., Schneider, N. M., Stewart, A. I. F., Deighan, J., Jain, S. K., Crismani, M., Stiepen, A., Chaffin, M. S., McClintock, W. E., & Holsclaw, G. M. (2015). N 2 in the upper atmosphere of Mars observed by IUVS on MAVEN. Geophysical Research Letters, 42, 9050–9056. https://doi.org/10.1002/2015GL065319
Strickland, D. J., Bishop, J., Evans, J. S., Majeed, T., Shen, P. M., Cox, R. J., Link, R., & Huffman, R. E. (1999). Atmospheric Ultraviolet Radiance Integrated Code (AURIC): Theory, software architecture, inputs, and selected results. Journal of Quantitative Spectroscopy and Radiation Transfer, 62(6), 689–742. https://doi.org/10.1016/S0022-4073(98)00098-3
Strickland, D. J., Book, D. L., Coffey, T. P., & Fedder, J. A. (1976). Transport equation techniques for the deposition of auroral electrons. Journal of Geophysical Research, 81(16), 2755–2764. https://doi.org/10.1029/JA081i016p02755
Tanaka, Y., Jursa, A. S., & le Blanc, F. J. (1960). “Higher Ionization Potentials of linear triatomic molecules”: I. CO 2 . The Journal of Chemical Physics, 32(4), 1199–1205. https://doi.org/10.1063/1.1730874
Tilford, S. G., & Simmons, J. D. (1972). Atlas of the observed absorption spectrum of carbon monoxide between 1060 and 1900 Å. Journal of Physical and Chemical Reference Data, 1(1), 147–188. https://doi.org/10.1063/1.3253097
van der Burgt, P. J. M., Westerveld, W. B., & Risley, J. S. (1989). Photoemission cross sections for atomic transitions in the extreme ultraviolet due to electron collisions with atoms and molecules. Journal of Physical and Chemical Reference Data, 18(4), 1757–1805. https://doi.org/10.1063/1.555844
Velichko, T. I., Mikhailenko, S. N., & Tashkun, S. A. (2012). Global multi-isotopologue fit of measured rotation and vibration-rotation line positions of CO in X 1 Σ + state and new set of mass-independent Dunham coefficients. Journal of Quantitative Spectroscopy and Radiation Transfer, 113(13), 1643–1655. https://doi.org/10.1016/j.jqsrt.2012.04.014
Wallace, L. (1962). Band-head wavelengths of C2, CH, CN, CO, NH, NO, O2, OH, and their ions. Astrophysical Journal Supplement, 7, 165–290. https://adsabs.harvard.edu/doi/10.1086/190078
Wells, W. C., Borst, W. L., & Zipf, E. C. (1978). Translational spectroscopy of metastable fragments produced by dissociative excitation of atmospheric gases by electron impact: II. Carbon monoxide. Physical Review A, 17(4), 1357–1365. https://doi.org/10.1103/PhysRevA.17.1357
Wells, W. C., & Zipf, E. C. (1972). Trans. AGU, 53, 459.
Wells, W. C., & Zipf, E. C. (1974). Lifetime of the metastable 5 S o state of atomic oxygen*. Physical Review A, 9(1), 568–570. https://doi.org/10.1103/PhysRevA.9.568
Yung, Y. L., & Demore, W. B. (1999). Photochemistry of planetary atmospheres. New York, New York: Oxford University Press.