[en] The detection of methane on Mars has been interpreted as indicating that geochemical or biotic activities could persist on Mars today 1 . A number of different measurements of methane show evidence of transient, locally elevated methane concentrations and seasonal variations in background methane concentrations 2–5 . These measurements, however, are difficult to reconcile with our current understanding of the chemistry and physics of the Martian atmosphere 6,7 , which—given methane’s lifetime of several centuries—predicts an even, well mixed distribution of methane 1,6,8 . Here we report highly sensitive measurements of the atmosphere of Mars in an attempt to detect methane, using the ACS and NOMAD instruments onboard the ESA-Roscosmos ExoMars Trace Gas Orbiter from April to August 2018. We did not detect any methane over a range of latitudes in both hemispheres, obtaining an upper limit for methane of about 0.05 parts per billion by volume, which is 10 to 100 times lower than previously reported positive detections 2,4 . We suggest that reconciliation between the present findings and the background methane concentrations found in the Gale crater 4 would require an unknown process that can rapidly remove or sequester methane from the lower atmosphere before it spreads globally.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Korablev, O.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Vandaele, A. C.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Daerden, F.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Thomas, I. R.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Trompet, L.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Erwin, J. T.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Quantin-Nata, C.; Laboratoire de Géologie de Lyon, Université Claude Bernard, Lyon, France
Renotte, Etienne ; Advanced Mechanical and Optical Systems (AMOS), Liège, Belgium
Ritter, Birgit ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Rodin, A.; School of Fundamental and Applied Physics, Moscow Institute of Physics and Technology (MIPT), Moscow, Russian Federation
Schmidt, F.; Geosciences Paris Sud (GEOPS), Université Paris Sud, Orsay, France
Schneider, N.; Laboratory for Atmospheric and Space Physics (LASP), Boulder, CO, United States
Shematovich, V.; Institute of Astronomy, Russian Academy of Sciences (RAS), Moscow, Russian Federation
Smith, M. D.; NASA Goddard Space Flight Center, Greenbelt, MD, United States
Teanby, N. A.; School of Earth Sciences, University of Bristol, Bristol, United Kingdom
Thiemann, E.; Laboratory for Atmospheric and Space Physics (LASP), Boulder, CO, United States
Aoki, S.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Thomas, N.; University of Bern, Bern, Switzerland
Vander Auwera, Jean
Vazquez, L.; Universidad Complutense de Madrid, Madrid, Spain
Villanueva, G.; NASA Goddard Space Flight Center, Greenbelt, MD, United States
Vincendon, M.; Institut d’Astrophysique Spatiale (IAS), Université Paris Sud, Orsay, France
Whiteway, J.; Centre for Research in Earth and Space Science, York University, Toronto, Canada
Wilquet, V.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Wolff, M. J.; Space Science Institute, Boulder, CO, United States
Wolkenberg, P.; Instituto de Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
Yelle, R.; Lunar and Planetary Laboratory (LPL), University of Arizona, Tucson, AZ, United States
Robert, S.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Zasova, L.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Zorzano, M. P.; Luleå University of Technology, Luleå, Sweden, Centro de Astrobiología, Instituto Nacional de Técnica Aeroespacial (CSIC/INTA), Madrid, Spain
The ACS and NOMAD Science Teams
Neary, L.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Viscardy, S.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Grigoriev, A. V.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Ignatiev, N. I.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Shakun, A.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Patrakeev, A.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Belyaev, D. A.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Bertaux, J.-L.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Paris, France
Olsen, K. S.; Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Paris, France
Alday, J.; Department of Physics, Oxford University, Oxford, United Kingdom
Ivanov, Y. S.; Main Astronomical Observatory (MAO), National Academy of Sciences of Ukraine, Kiev, Ukraine
Ristic, B.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Mason, J.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Willame, Y.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Depiesse, C.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Hetey, L.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Berkenbosch, S.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Clairquin, R.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Queirolo, C.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Beeckman, B.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Neefs, E.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Patel, M. R.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Bellucci, G.; Instituto de Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
López-Moreno, J.-J.; Instituto de Astrofìsica de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
Wilson, C. F.; Department of Physics, Oxford University, Oxford, United Kingdom
Etiope, G.; Instituto de Astrofisica e Planetologia Spaziali, INAF, Rome, Italy, Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy, Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
Zelenyi, L.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Svedhem, H.; European Space Research and Technology Centre (ESTEC), ESA, Noordwijk, Netherlands
Vago, J. L.; European Space Research and Technology Centre (ESTEC), ESA, Noordwijk, Netherlands
Alonso-Rodrigo, G.; Instituto Universitario de Microgravedad, Universidad Politécnica de Madrid (IDR-UPM), Madrid, Spain
Altieri, F.; Instituto de Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
Anufreychik, K.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Arnold, G.; Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Planetary Research, Berlin, Germany
Bauduin, Simon ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Ingénierie des véhicules terrestres
Bolsée, D.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Carrozzo, G.; Instituto de Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
Clancy, R. T.; Space Science Institute, Boulder, CO, United States
Cloutis, E.; Department of Geography, University of Winnipeg, Winnipeg, Canada
Crismani, M.; NASA Goddard Space Flight Center, Greenbelt, MD, United States
Da Pieve, F.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
D’Aversa, E.; Instituto de Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
Encrenaz, T.; Laboratoire d’études spatiales et d’instrumentation en astrophysique (LESIA), Observatoire de Paris-Meudon, Paris, France
Fouchet, T.; Laboratoire d’études spatiales et d’instrumentation en astrophysique (LESIA), Observatoire de Paris-Meudon, Paris, France
Funke, B.; Instituto de Astrofìsica de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
Fussen, D.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium
Garcia-Comas, M.; Instituto de Astrofìsica de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
Gérard, Jean-Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Giuranna, M.; Instituto de Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
Gkouvelis, Leonardos ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Gonzalez-Galindo, F.; Instituto de Astrofìsica de Andalucía, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
Grassi, D.; Instituto de Astrofisica e Planetologia Spaziali, INAF, Rome, Italy
Guerlet, S.; Laboratoire de Météorologie Dynamique (LMD), CNRS Jussieu, Paris, France
Hartogh, P.; Max Planck Institute, Göttingen, Germany
Holmes, J.; School of Physical Sciences, The Open University, Milton Keynes, United Kingdom
Hubert, Benoît ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Kaminski, J.; Institute of Geophysics, Polish Academy of Sciences, Warsaw, Poland
Karatekin, O.; Royal Observatory of Belgium, Brussels, Belgium
Kasaba, Y.; Tohoku University, Sendai, Japan
Kass, D.; NASA Jet Propulsion Laboratory, Pasadena, CA, United States
Khatuntsev, I.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Kleinbohl, A.; NASA Jet Propulsion Laboratory, Pasadena, CA, United States
Kokonkov, N.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation
Krasnopolsky, V.; Catholic University of America, Washington, DC, United States, School of Fundamental and Applied Physics, Moscow Institute of Physics and Technology (MIPT), Moscow, Russian Federation
Kuzmin, R.; Space Research Institute (IKI), Russian Academy of Sciences (RAS), Moscow, Russian Federation, Vernadsky Institute, Russian Academy of Sciences (RAS), Moscow, Russian Federation
Yung, Y. L. et al. Methane on Mars and habitability: challenges and responses. Astrobiology 18, 10.1089/ast.2018.1917 (2018).
Mumma, M. J. et al. Strong release of methane on Mars in northern summer 2003. Science 323, 1041–1045 (2009).
Webster, C. R. et al. Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015).
Webster, C. R. et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 1093–1096 (2018).
Giuranna, M. et al. Independent confirmation of a methane spike on Mars and a source region east of Gale Crater. Nat. Geosci. http://www.nature.com/articles/s41561-019-0331-9 (2019).
Lefèvre, F. & Forget, F. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460, 720–723 (2009).
Zahnle, K., Freedman, R. S. & Catling, D. C. Is there methane on Mars? Icarus 212, 493–503 (2011).
Viscardy, S., Daerden, F. & Neary, L. Formation of layers of methane in the atmosphere of Mars after surface release. Geophys. Res. Lett. 43, 1868–1875 (2016).
Krasnopolsky, V. A., Maillard, J. P. & Owen, T. C. Detection of methane in the Martian atmosphere: evidence for life? Icarus 172, 537–547 (2004).
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N. & Giuranna, M. Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004).
Villanueva, G. L. et al. A sensitive search for organics (CH4, CH3OH, H2CO, C2H6, C2H2, C2H4), hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 223, 11–27 (2013).
Krasnopolsky, V. Search for methane and upper limits to ethane and SO2 on Mars. Icarus 217, 144–152 (2012).
Zahnle, K. Play it again, SAM. Science 347, 370–371 (2015).
Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013).
Oehler, D. & Etiope, G. Methane seepage on Mars: where to look and why. Astrobiology 17, 1233–1264 (2017).
Vago, J. et al. ESA ExoMars program: the next step in exploring Mars. Sol. Syst. Res. 49, 518–528 (2015).
Svedhem, H. et al. The ExoMars Trace Gas Orbiter. Space Sci. Rev. (in the press).
Korablev, O. et al. The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Sci. Rev. 214, 7 (2018).
Vandaele, A. C. et al. NOMAD, an integrated suite of three spectrometers for the ExoMars Trace Gas mission: technical description, science objectives and expected performance. Space Sci. Rev. 214, 80 (2018).
Vandaele, A. C. et al. Martian dust storm impact on atmospheric water and HDO/H2O observed by ExoMars Trace Gas Orbiter. Nature https://www.nature.com/articles/s41586-019-1097-3 (2019).
Fedorova, A. et al. Water vapor in the middle atmosphere of Mars during the 2007 global dust storm. Icarus 300, 440–457 (2018).
Mischna, M. A., Allen, M., Richardson, M. I., Newman, C. E. & Toigo, A. D. Atmospheric modeling of Mars methane surface releases. Planet. Space Sci. 59, 227–237 (2011).
Waugh, D. W., Toigo, A. D. & Guzewich, S. D. Age of martian air: time scales for martian atmospheric transport. Icarus 317, 148–157 (2019).
Tyler, D. & Barnes, J. R. Convergent crater circulations on Mars: influence on the surface pressure cycle and the depth of the convective boundary layer. Geophys. Res. Lett. 42, 7343–7350 (2015).
Vasavada, A. R. et al. Assessment of environments for Mars Science Laboratory entry, descent, and surface operations. Space Sci. Rev. 170, 793–835 (2012).
Clancy, R. T., Sandor, B. J. & Moriarty-Schieven, G. H. A measurement of the 362 GHz absorption line of Mars atmospheric H2O2. Icarus 168, 116–121 (2004).
Clancy, R. T. et al. Daily global mapping of Mars ozone column abundances with MARCI UV band imaging. Icarus 266, 112–133 (2016).
Smith, M.D. et al. The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model. Icarus 301, 117–131 (2018).
Trompet, L. et al. Improved algorithm for the transmittance estimation of spectra obtained with SOIR/Venus Express. Appl. Opt. 55, 9275–9281 (2016).
Liuzzi, G. et al. Methane on Mars: new insights into the sensitivity of CH4 with the NOMAD/ExoMars spectrometer through its first in-flight calibration. Icarus 321, 671–690 (2019).
Maltagliati, L. et al. Annual survey of water vapor vertical distribution and water–aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations. Icarus 223, 942–962 (2013).
Rodgers, C. D. Inverse Methods for Atmospheric Sounding Vol. 2 (World Scientific, 2000).
Gordon, I. E. et al. The HITRAN2016 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 203, 3–69 (2017).
Millour, E. et al. The Mars Climate Database (MCD version 5.2). European Planetary Science Congress 2015 abstr. EPSC2015-438 http://meetingorganizer.copernicus.org/EPSC2015/EPSC2015-438.pdf (2015).
More, J., Garbow, B. & Hillstrom, K. User Guide for MINPACK-1 Technical Report ANL-80-74 (Argonne National Laboratory, 1980).
Webster, C. R. et al. Low upper limit to methane abundance on Mars. Science 342, 355–357 (2013).
Steele, L. J., Balme, M. R., Lewis, S. R. & Spiga, A. The water cycle and regolith–atmosphere interaction at Gale crater, Mars. Icarus 289, 56–79 (2017).
Lefèvre, F. & Krasnopolsky, V. in The Atmosphere and Climate of Mars (ACM2017) (ed. Haberle, R. M.) 374–404 (Cambridge Univ. Press, 2017).