Alles, M. S., J. G. Hautvast, F. M. Nagengast, R. Hartemink, K. M. Van Laere, and J. B. Jansen. 1996. Fate of fructo-oligosaccharides in the human intestine. Br. J. Nutr. 76:211-221.
Al-Sadi, R., S. Guo, D. Ye, M. Rawat, and T. Y. Ma. 2016. TNF-a modulation of intestinal tight junction permeability is mediated by NIK/IKK-a axis activation of the canonical NF-kB pathway. Am. J. Pathol. 186:1151-1165.
Al-Sadi, R., D. Ye, M. Boivin, S. Guo, M. Hashimi, L. Ereifej, and T. Y. Ma. 2014. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of Claudin-2 gene. PLoS One 9:e85345.
Awad, W. A., J. R. Aschenbach, B. Khayal, C. Hess, and M. Hess. 2012. Intestinal epithelial responses to Salmonella enterica serovar Enteritidis: Effects on intestinal permeability and ion transport. Poult. Sci. 91:2949-2957.
Awad, W. A., C. Hess, and M. Hess. 2017. Enteric pathogens and their toxin-induced disruption of the intestinal barrier through alteration of tight junctions in chickens. Toxins. 9:60.
Barcelo, A., J. Claustre, F. Moro, J. A. Chayvialle, J. C. Cuber, and P. Plaisancie. 2000. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut. 46:218-224; PMID:10644316; http://dx.doi.org/10.1136/gut.46.2.218.
Buclaw, M. 2016. The use of inulin in poultry feeding: A review. J. Anim. Physiol. Anim. Nutr. 100:1015-1022.
Calik, A., A. Ceylan, B. Ekim, S. G. Adabi, F. Dilber, A. G. Bayraktaroglu, T. Tekinay, D. Özen, and P. Sacakli. 2017. The effect of intra-amniotic and posthatch dietary synbiotic administration on the performance, intestinal histomorphology, cecal microbial population, and short-chain fatty acid composition of broiler chickens. Poult. Sci. 96:169-183.
Canani, R. B., M. D. Costanzo, L. Leone, M. Pedata, R. Meli, and A. Calignano. 2011. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases.World J. Gastroenterol. 17:1519-1528.
Capitán-Cañadas, F., M. Ortega-González, E. Guadix, A. Zarzuelo, M. D. Suárez, F. S. de Medina, and O Martínez-Augustin. 2014. Prebiotic oligosaccharides directly modulate proinflammatory cytokine production in monocytes via activation of TLR4. Mol. Nutr. Food Res. 58:1098-1110.
Chen, K., H. Chen, M. M. Faas, B. J. de Haan, J. Li, P. Xiao, H. Zhang, J. Diana, P. de Vos, and J. Sun. 2017. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis. Mol. Nutr. Food Res. 61: Doi:10.1002/mnfr.201601006.
Dokladny, K., M. N. Zuhl, and P. L. Moseley. 2016. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J. Appl. Physiol. 120:692-701.
Ferenczi, S., K. Szegi, Z. Winkler, T. Barna, and K. J. Kovács. 2016. Oligomannan prebiotic attenuates immunological, clinical and behavioral symptoms in mouse model of inflammatory bowel disease. Sci. Rep. 6:34132.
Garcia-Hernandez, V., M. Quiros, and A. Nusrat. 2017. Intestinal epithelial claudins: Expression and regulation in homeostasis and inflammation. Ann. NY. Acad. Sci. 1397:66-79.
Guarner, F. 2007. Studies with inulin-type fructans on intestinal infections, permeability, and inflammation. J. Nutr. 137:2568S-2571S.
Guttman, J. A., and B. B. Finlay. 2009. Tight junctions as targets of infectious agents. Biochim. Biophys. Acta. 1788:832-841.
Guilloteau, P., L. Martin, V. Eeckhaut, R. Ducatelle, R. Zabielski, and F. Van Immerseel. 2010. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 23:366-384.
He, Y., C. Wu, J. Li, H. Li, Z. Sun, H. Zhang, P. de Vos, L. L. Pan, and J. Sun. 2017. Inulin-type fructans modulates pancreatic-gut innate immune responses and gut barrier integrity during experimental acute pancreatitis in a chain length-dependent manner. Front. Immunol. 8:1209.
Huang, H., Y. Liu, J. Daniluk, S. Gaiser, J. Chu, H. Wang, Z. S. Li, C. D. Logsdon, and B. Ji. 2013. Activation of nuclear factor κB in acinar cell increases the severity of pancreatitis in mice. Gastroenterology. 144:202-210.
Huang, X. Z., Z. R. Li, L. B. Zhu, H. Y. Huang, L. L. Hou, and J. Lin. 2014. Inhibition of p38 mitogen-activated protein kinase attenuates butyrate-induced intestinal barrier impairment in a Caco-2 cell monolayer model. J. Pediatr. Gastroenterol. Nutr. 59:264-269.
Kareem, K. Y., T. C. Loh, H. L. Foo, S. A. Asmara, and H. Akit. 2017. Influence of postbiotic RG14 and inulin combination on cecal microbiota, organic acid concentration, and cytokine expression in broiler chickens. Poult. Sci. 96:966-975.
Lee, H. J., H. S. Seo, G. J. Kim, C. Y. Jeon, J. H. Park, B. H. Jang, S. J. Park, Y. C. Shin, and D. G. Ko. 2013. Houttuynia cordata Thunb inhibits the production of pro-inflammatory cytokines through inhibition of the NFkappaB signaling pathway in HMC-1 human mast cells. Mol. Med. Rep. 8:731-736.
Leea, C., B. G. Kimc, J. H. Kima, J. Chuna, J. P. Ima, and J. S. Kim. 2017. Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. Int. Immunopharmacol. 51:47-56.
Liu, T. W., K. D. Cephas, H. D. Holscher, K. R. Kerr, H. F. Mangian, K. A. Tappenden, and K. S. Swanson. 2016. Nondigestible fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of Diet-Induced obese C57BL/6 J mice. J. Nutr. 146:949-956.
Livak, K. J., and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔCt) method. Methods. 25:402-408.
Ma, T. Y., G. K. Iwamoto, N. T. Hoa, V. Akotia, A. Pedram, M. A. Boivin, and H. M. Said. 2004. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NFkappa B activation. Am. J. Physiol.-Gastrointest Liver Physiol. 286:G367-G376
Meyer, D., and M. Stasse-Wolthuis. 2009. The bifidogenic effect of inulin and oligofructose and its consequences for gut health. Eur. J. Clin. Nutr. 63:1277-1289
Oakley, B. B., H. S. Lillehoj, M. H. Kogut, W. K. Kim, J. J. Maurer, A. Pedroso, M. D. Lee, S. R. Collett, T. J. Johnson, and N. A. Cox. 2014. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 360:100-112.
Orel, R., and T. K. Trop. 2014. Intestinal microbiota, probiotics and prebiotics in inflammatory bowel disease.World J. Gastroenterol. 20:11505-11524.
Paassen, N., A. Vincent, P. J. Puiman, M. van der Sluis, J. Bouma, G. Boehm, J. B. van Goudoever, I. van Seuningen, and I. B. Renes. 2009. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochem. J. 13:211-219.
Peng, L., Z. He, W. Chen, I. R. Holzman, and J. Lin. 2007. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res. 61:37-41.
Poritz, L. S., L. R. Harris, A. A. Kelly, and W. A. Koltun. 2011. Increase in the tight junction protein claudin-1 in intestinal inflammation. Dig. Dis. Sci. 56:2802-2809.
Pourabedin, M., and X. Zhao. 2015. Prebiotics and gut microbiota in chickens. FEMS Microbiol. Lett. 362: Fnv122. doi: 10.1093/femsle/ fnv122.
Pruszynska-Oszmalek, E., P. A. Kolodziejski, K. Stadnicka, M. Sassek, D. Chalupka, B. Kuston, L. Nogowski, P. Mackowiak, G. Maiorano, J. Jankowski, and M. Bednarczyk. 2015. In ovo injection of prebiotics and synbiotics affects the digestive potency of the pancreas in growing chickens. Poult. Sci. 94:1909-1916.
Quinteiro-Filho, W. M., A. Ribeiro, V. Ferraz-de-Paula, M. L. Pinheiro, M. Sakai, L. R. Sa, A. J. Ferreira, and J. Palermo-Neto. 2010. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 89:1905-1914.
Rehman, H., P. Hellweg, D. Taras, and J. Zentek. 2008. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poult. Sci. 87:783-789.
Rychlik, I., M. Elsheimer-Matulova, and K. Kyrova. 2014. Gene expression in the chicken caecum in response to infections with nontyphoid Salmonella. Vet Res. 45:119.
Seifert, S., and B. Watzl. 2007. Inulin and oligofructose: Review of experimental data on immune modulation. J. Nutr. 137:2563S-2567S.
Shang, Y., A. Regassa, J. H. Kim, and W. K. Kim. 2015. The effect of dietary fructooligosaccharide supplementation on growth performance, intestinal morphology, and immune responses in broiler chickens challenged with Salmonella Enteritidis lipopolysaccharides. Poult. Sci. 94:2887-2897.
Sivaprakasam, S., P. D. Prasad, and N. Singh. 2016. Benefits of Short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 164:144-151.
Song, J., L. F. Jiao, K. Xiao, Z. S. Luan, C. H. Hu, B. Shi, and X. A. Zhan. 2013. Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. Anim. Feed Sci. Technol. 185:175-181.
Suenaert, P., V. Bulteel, L. Lemmens, M. Noman, B. Geypens, G. Van Assche, K. Geboes, J. L. Ceuppens, and P. Rutgeerts. 2002. Anti-tumor necrosis factor treatment restores the gut barrier in Crohn's disease. Am. J. Gastroenterol. 97:2000-2004.
Sunkara, L. T., M. Achanta, N. B. Schreiber, Y. R. Bommineni, G. Dai, W. Jiang, S. Lamont, H. S. Lillehoj, A. Beker, R. G. Teeter, and G. Zhang. 2011. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One 6:e27225.
Tako, E., and R. P. Glahn. 2012. Intra-amniotic administration and dietary inulin affect the iron status and intestinal functionality of iron-deficient broiler chickens. Poult. Sci. 91:1361-1370.
Vogt, L., D. Meyer, G. Pullens, M. Faas, M. Smelt, K. Venema, U. Ramasamy, H. A. Schols, and P. De Vos. 2015. Immunological properties of Inulin-type fructans. Crit. Rev. Food Sci. Nutr. 55:414-436.
Weitkunat, K., S. Schumann, K. J. Petzke, M. Blaut, G. Loh, and S. Klaus. 2015. Effects of dietary inulin on bacterial growth, shortchain fatty acid production and hepatic lipid metabolism in gnotobiotic mice. J. Nutr. Biochem. 26:929-937.
Whelan, K. 2011. Probiotics and prebiotics in the management of irritable bowel syndrome. Curr. Opin. Clin. Nutr. Metab. Care. 14:581-587.
Wilson, B., and K. Whelan. 2017. Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function, and application in gastrointestinal disorders. J. Gastroenterol. Hepatol. 32:64-68.
Wu, R. Y., M. Abdullah, P. Määttänen, A. V. C. Pilar, E. Scruten, K. C. Johnson-Henry, S. Napper, C. O'Brien, N. L. Jones, and P. M. Sherman. 2017a. Protein kinase C δ signaling is required for dietary prebioticinduced strengthening of intestinal epithelial barrier function. Sci. Rep. 7:40820.
Wu, R. Y., P. Määttänen, S. Napper, E. Scruten, B. Li, Y. Koike, K. C. Johnson-Henry, A. Pierro, L. Rossi, S. R. Botts, M. G. Surette, and P. M. Sherman. 2017b. Non-digestible oligosaccharides directly regulate host kinome to modulate host inflammatory responses without alterations in the gut microbiota. Microbiome. 5:135.
Yan, H., and K. M. Ajuwon. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12:e0179586. https://doi.org/10.1371/journal.pone.0179586.
Yang, G. Q., Y. Yin, H. Y. Liu, and G. H. Liu. 2016. Effects of dietary oligosaccharide supplementation on growth performance, concentrations of the major odor-causing compounds in excreta, and the cecal microflora of broilers. Poult. Sci. 95:2342-2351.
Yasuda, K., H. D. Dawson, E. V. Wasmuth, C. A. Roneker, C. Chen, J. F. Urban, R. M. Welch, D. D. Miller, and X. G. Lei. 2009. Supplemental dietary inulin influences expression of iron and inflammation related genes in young pigs. J. Nutr. 139:2018-2023.
Zhang, S., J. Yang, S. M. Henning, R. Lee, M. Hsu, E. Grojean, R. Pisegna, A. Ly, D. Heber, and Z. Li. 2017. Dietary pomegranate extract and inulin affect gut microbiome differentially in mice fed an obesogenic diet. Anaerobe. 13:184-193.
Zhong, Y., N. Marungruang, F. Fak, and M. Nyman. 2015. Effects of two whole-grain barley varieties on caecal SCFA, gut microbiota and plasma inflammatory markers in rats consuming low- and high-fat diets. Br. J. Nutr. 113:1558-1570.