Ferrites; Permanent magnet; Magnetic properties; (BH)
Abstract :
[en] In this study, we report the behavior of maximum energy product (BH)max of cobalt ferrite nanopowder towards the variation of calcinations temperature. The studied CoFe2O4 nanopowder was synthesized using sol–gel autocombustion method. X-ray diffraction, scanning electron microscopy, Mössbauer spectroscopy and superconducting quantum interference device magnetometer techniques were used to characterize crystal structure, phase composition, morphology and magnetic properties. By changing the calcination temperature (T = 600 °C, 800 °C, 1000 °C and 1100 °C), the structural and magnetic properties of the compounds could be tuned. The magnetic properties results show that the highest value of (BH)max is close to 0.35 MGOe observed for the sample calcined at T = 800 °C. These results suggest that (BH)max of cobalt ferrite nanopowder can be enhanced by optimizing synthesis steps.
Disciplines :
Chemistry
Author, co-author :
Abraime, B.
Mahmoud, Abdelfattah ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Gutfleisch, O., Willard, M.A., Bruck, E., Chen, C.H., Sankar, S.G., Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Adv. Mater., 23, 2011, 821.
J.M.D. Coey, Hard magnetic materials: a perspective. IEEE transactions on magnetics, 47 (2011), 12, 4671–4681.
Balasubramanian, B., Das, B., Skomski, R., Zhang, W.Y., Sellmyer, D.J., Novel nanostructured rare earth free magnetic materials with high energy products. Adv. Mater. 25 (2013), 6090–6093 42.
O. Mounkachi, R. Lamouri, B. Abraime, H. Ez-Zahraouy, A. El Kenz, M. Hamedoun, A. Benyoussef, Exploring the magnetic and structural properties of Nd-doped Cobalt nano-ferrite for permanent magnet application, Ceramics International.
Gan, Lu., Lijie, Xu., Qian, Kun, Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4 nanocomposites for photocatalytic degradation of organic. dyes, 2016.
Solano, Eduardo, Perez-Mirabet, Leonardo, Martinez-Julian, Fernando, et al. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles. J. Nanopart. Res., 14(8), 2012, 1034.
Ahmed, T.T., Rahman, I.Z., Rahman, M.A., Study on the properties of the copper substituted Nizn ferrites. J. Mater. Process. Technol. 153–154 (2004), 797–803.
R. Valenzuela, Magnetic Ceramics. first ed., Cambridge University Press, Melbourne, pp. 3–23.
Mouallem-Bahout, M., Bertrand, S., Pena, O., Synthesis and characterization of ZnxNi1-xFe2O4 spinels prepared by citrate precursor. J. Solid State Chem. 178:4 (2005), 1080–1086.
Na, J.G., Lee, T.D., Park, S.J., Effects of cation distribution on magnetic properties in cobalt ferrite. J. Mater. Sci. Lett. 12:12 (1993), 961–962.
López-Ortega, A., Lottini, E., Fernandez, C.D.J., Sangregorio, C., Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27:11 (2015), 4048–4056.
Lottini, E., López-Ortega, A., Bertoni, G., Turner, S., Meledina, M., Van Tendeloo, G., Sangregorio, C., Strongly exchange coupled core| shell nanoparticles with high magnetic anisotropy: a strategy toward rare-earth-free permanent magnets. Chem. Mater. 28:12 (2016), 4214–4222.
López-Ortega, A., Lottini, E., Bertoni, G., de Julián Fernández, C., Sangregorio, C., Topotaxial phase transformation in cobalt doped iron oxide core/shell hard magnetic nanoparticles. Chem. Mater. 29:3 (2017), 1279–1289.
Zhao, Lijun, Zhang, Hongjie, Xing, Yan, et al. Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181:2 (2008), 245–252.
Ayyappan, S., Philip, John, Et Raj, Baldev, Effect of digestion time on size and magnetic properties of spinel CoFe2O4 nanoparticles. J. Phys. Chem. C 113:2 (2008), 590–596.
George, Mathew, John, Asha Mary, Nair, Swapna S., et al. Finite size effects on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders. J. Mag. Mag. Mater. 302:1 (2006), 190–195.
Shafi, K.V.P.M., Koltypin, Y., Gedanken, A., Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J. Phys. Chem. B, 101, 1997, 6409.
Prasad, Seema Et, Gajbhiye, N.S., Magnetic studies of nanosized nickel ferrite particles synthesized by the citrate precursor technique. J. Alloys Compd. 265:1 (1998), 87–92.
Shi, Y., Ding, J., Liu, X., et al. NiFe2O4 ultrafine particles prepared by Co-precipitation/mechanical alloying. J. Mag. Mag. Mater. 205:2 (1999), 249–254.
Kale, A., Gubbala, S., Et Misra, R.D.K., Magnetic behavior of nanocrystalline nickel ferrite synthesized by the reverse Micelle technique. J. Mag. Mag. Mater. 277:3 (2004), 350–358.
Zhou, Jun, Ma, Junfeng, Sun, Chong, et al. Low temperature synthesis of NiFe2O4 by a hydrothermal method. J. Am. Ceram. Soc. 88:12 (2005), 3535–3537.
Grigorova, M., Blythe, H.J., Blaskov, V., et al. Magnetic properties and Mössbauer Spectra of nanosized CoFe2O4 powders. J. Mag. Mag. Mater. 183:1 (1998), 163–172.
Sutka, Andris Et, Mezinskis, Gundars, Sol-gel auto-combustion synthesis of spinel-type ferrite nanomaterials. Front. Mater. Sci. 6 (2012), 1–14.
Ai, Lunhong, Jiang, Jing, Influence of annealing temperature on the formation, microstructure and magnetic properties of spinel nanocrystalline cobalt ferrites. Curr. Appl. Phys. 10 (2010), 284–288.
Lopez, H.F., Et Mendoza, H., Temperature effects on the crystallization and coarsening of nano-CeO2 Powders. ISRN Nanomater., Vol, 2013, 2013.
Lima, A.C., Morales, M.A., Araújo, J.H., et al. Evaluation of (BH)max and magnetic anisotropy of cobalt ferrite nanoparticles synthesized in gelatin. Ceram. Int. 41:9 (2015), 11804–11809.
Sawatzky, G.A., Van Der Woude, F., Morrish, A.H., Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J. Appl. Phys., 39, 1968, 1204.
Kumar, Y., Shirage, P.M., Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach. J. Mater. Sci. 52:9 (2017), 4840–4851.
Prabhakaran, T., Et Hemalatha, J., Chemical control on the size and properties of nano NiFe2O4 synthesized by sol–gel autocombustion method. Ceram. Int. 40:2 (2014), 3315–3324.
Qu, Yuqiu, Yang, Haibin, Yang, Nan, Coprecipitated, Of, CoFe2O4 Nanoparticles, et al. The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles. Mater. Lett. 60:29 (2006), 3548–3552.
Leslie-Pelecky, Diandra L., Et Rieke, Reuben D., Magnetic properties of nanostructured materials. Chem. Mater. 8:8 (1996), 770–1783.
Shoushtari, M. Zargar, Ghahfarokhi, S.E. Mousavi, Et Ranjbar, F., Synthesis and magnetic properties of SrFe12-XCoxO19 (X= 0–2) hexaferrite nanoparticles. Adv. Mater. Res. Trans. Tech Publ., 2013, 925–929.
Hamidizadeh, S., Study of Magnetic Properties and Demagnetization Models of Permanent Magnets for Electric Vehicles Application. 2016, McGill University Libraries Doctoral dissertation.
Leite, G.C., Chagas, E.F., Pereira, R., Prado, R.J., Terezo, A.J., Alzamora, M., Baggio-Saitovitch, E., Exchange coupling behavior in bimagnetic CoFe2O4/CoFe2 nanocomposite. J. Mag. Mag. Mater. 324:18 (2012), 2711–2716.
Yadav, R.S., Havlica, J., Hnatko, M., Šajgalík, P., Alexander, C., Palou, M., Zmrzlý M., Magnetic properties of Co1-xZnxFe2O4 spinel ferrite nanoparticles synthesized by starch-assisted sol-gel autocombustion method and its ball milling. J. Mag. Mag. Mater. 378 (2015), 190–199.
Tung, L.D., Kolesnichenko, V., Caruntu, G., et al. Annealing effects on the magnetic properties of nanocrystalline zinc ferrite. Phys. B: Condens. Matter 319:1 (2002), 116–121.