Power-to-gas; Gas storage; Integrated energy systems; Optimal system planning; Hydrogen integration; Carbon capture
Résumé :
[en] This paper proposes an optimisation-based framework to tackle long-term centralised planning problems of multi-sector, integrated energy systems including electricity, hydrogen, natural gas, synthetic methane and carbon dioxide. The model selects and sizes the set of power generation, energy conversion and storage as well as carbon capture technologies minimising the cost of supplying energy demand in the form of electricity, hydrogen, natural gas or synthetic methane across the power, heating, transportation and industry sectors whilst accounting for policy drivers, such as energy independence, carbon dioxide emissions reduction targets, or support schemes. The usefulness of the model is illustrated by a case study evaluating the potential of sector coupling via power-to-gas and carbon capture technologies to achieve deep decarbonisation targets in the Belgian context. Results, on the one hand, indicate that power-to-gas can only play a minor supporting role in cross-sector decarbonisation strategies in Belgium, as electrolysis plants are deployed in moderate quantities whilst methanation plants do not appear in any studied scenario. On the other hand, given the limited renewable potential, post-combustion and direct air carbon capture technologies clearly play an enabling role in any decarbonisation strategy, but may also exacerbate the dependence on fossil fuels.
Disciplines :
Energie
Auteur, co-auteur :
Berger, Mathias ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Radu, David-Constantin ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Fonteneau, Raphaël ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Deschuyteneer, Thierry
Detienne, Ghislain
Ernst, Damien ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Langue du document :
Anglais
Titre :
The Role of Power-to-Gas and Carbon Capture Technologies in Cross-Sector Decarbonisation Strategies
O'Malley, M., Kroposki, B., Hannegan, B., Madsen, H., et al. Integrated Energy Systems: Defining and Describing the Value Proposition, Tech. Rep. 2016, National Renewable Energy Lab, Golden, CO.
Agency, I.E., Status of Power System Transformation. 2018 (accessed 03.08.19) https://webstore.iea.org/download/summary/1041.
Belderbos, A., Storage Via Power-To-Gas in Future Energy Systems: The Need for Synthetic Fuel Storage in Systems With High Shares of Intermittent Renewables (Ph.D. thesis. 2019, Katholieke Universiteit Leuven, Leuven, Belgium.
Pleßmann, G., Erdmann, M., Hlusiak, M., Breyer, C., Global energy storage demand for a 100% renewable electricity supply. Energy Proc. 46 (2014), 22–31, 10.1016/j.egypro.2014.01.154 8th International Renewable Energy Storage Conference and Exhibition (IRES2013).
Bogdanov, D., Breyer, C., North-east Asian super grid for 100 supply: optimal mix of energy technologies for electricity, gas and heat supply options. Energy Convers. Manag. 112 (2016), 176–190, 10.1016/j.enconman.2016.01.019.
Brown, T., Schlachtberger, D., Kies, A., Schramm, S., Greiner, M., Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 160 (2018), 720–739, 10.1016/j.energy.2018.06.222.
Poncelet, K., Delarue, E., Six, D., Duerinck, J., D'haeseleer, W., Impact of the level of temporal and operational detail in energy-system planning models. Appl. Energy 162 (2016), 631–643, 10.1016/j.apenergy.2015.10.100.
Berger, M., Radu, D., Fonteneau, R., Detienne, G., Deschuyteneer, T., Ernst, D., Centralised planning of national integrated energy system with power-to-gas and gas storages. 2018 Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MEDPOWER), 2018, 1–6.
M. Berger, Optimal Multi-Carrier System Planning Repository. https://github.com/MathiasPBerger/MultiCarrierPlanning (accessed 03.08.19).
Mancarella, P., MES (multi-energy systems): an overview of concepts and evaluation models. Energy 65 (2014), 1–17, 10.1016/j.energy.2013.10.041.
Bakken, B.H., Holen, A.T., Energy service systems: integrated planning case studies. IEEE Power Engineering Society General Meeting, vol. 2, 2004, 2068–2073, 10.1109/PES.2004.1373245.
Geidl, M., Andersson, G., A modeling and optimization approach for multiple energy carrier power flow. 2005 IEEE Russia Power Tech, 2005, 1–7, 10.1109/PTC.2005.4524640.
Chicco, G., Mancarella, P., From cogeneration to trigeneration: profitable alternatives in a competitive market. IEEE Trans. Energy Convers. 21:1 (2006), 265–272, 10.1109/TEC.2005.858089.
Qadrdan, M., Wu, J., Jenkins, N., Ekanayake, J., Operating strategies for a GB integrated gas and electricity network considering the uncertainty in wind power forecasts. IEEE Trans. Sustain. Energy 5:1 (2014), 128–138, 10.1109/TSTE.2013.2274818.
Mak, T.W.K., Hentenryck, P.V., Zlotnik, A., Bent, R., Dynamic compressor optimization in natural gas pipeline systems. INFORMS J. Comput. 31:1 (2019), 40–65, 10.1287/ijoc.2018.0821.
Bent, R., Blumsack, S., Van Hentenryck, P., Borraz-Sánchez, C., Shahriari, M., Joint electricity and natural gas transmission planning with endogenous market feedbacks. IEEE Trans. Power Syst. 33:6 (2018), 6397–6409, 10.1109/TPWRS.2018.2849958.
Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G., Coordinated scheduling for interdependent electric power and natural gas infrastructures. IEEE Trans. Power Syst. 32:1 (2017), 600–610, 10.1109/TPWRS.2016.2545522.
O'Malley, C., Roald, L., Kourounis, D., Schenk, O., Hug, G., Security assessment in gas-electric networks. 2018 20th Power Systems Computation Conference (PSCC 2018), 2018, IEEE, Dublin, Ireland, June 11-15, 2018, 8442923, 10.23919/PSCC.2018.8442923.
Yang, J., Zhang, N., Kang, C., Xia, Q., Effect of natural gas flow dynamics in robust generation scheduling under wind uncertainty. IEEE Trans. Power Syst. 33:2 (2018), 2087–2097, 10.1109/TPWRS.2017.2733222.
Yan, M., He, Y., Shahidehpour, M., Ai, X., Li, Z., Wen, J., Coordinated regional-district operation of integrated energy systems for resilience enhancement in natural disasters. IEEE Trans. Smart Grid, 2018, 1, 10.1109/TSG.2018.2870358.
Clegg, S., Mancarella, P., Integrated modeling and assessment of the operational impact of power-to-gas (p2g) on electrical and gas transmission networks. IEEE Trans. Sustain. Energy 6:4 (2015), 1234–1244, 10.1109/TSTE.2015.2424885.
Qadrdan, M., Abeysekera, M., Chaudry, M., Wu, J., Jenkins, N., Role of power-to-gas in an integrated gas and electricity system in Great Britain. Int. J. Hydrogen Energy 40:17 (2015), 5763–5775, 10.1016/j.ijhydene.2015.03.004.
Li, Y., Liu, W., Shahidehpour, M., Wen, F., Wang, K., Huang, Y., Optimal operation strategy for integrated natural gas generating unit and power-to-gas conversion facilities. IEEE Trans. Sustain. Energy 9:4 (2018), 1870–1879, 10.1109/TSTE.2018.2818133.
Shams, M.H., Shahabi, M., Khodayar, M.E., Risk-averse optimal operation of multiple-energy carrier systems considering network constraints. Electr. Power Syst. Res. 164 (2018), 1–10, 10.1016/j.epsr.2018.07.022.
Tovar-Ramírez, C., Fuerte-Esquivel, C., Mares, A.M., Sánchez-Gardu no, J., A generalized short-term unit commitment approach for analyzing electric power and natural gas integrated systems. Electr. Power Syst. Res. 172 (2019), 63–76, 10.1016/j.epsr.2019.03.005.
Qadrdan, M., Fazeli, R., Jenkins, N., Strbac, G., Sansom, R., Gas and electricity supply implications of decarbonising heat sector in GB. Energy 169 (2019), 50–60, 10.1016/j.energy.2018.11.066.
Geidl, M., Andersson, G., Optimal coupling of energy infrastructures. 2007 IEEE Lausanne Power Tech, 2007, 1398–1403, 10.1109/PCT.2007.4538520.
Belderbos, A., Delarue, E., D'haeseleer, W., Possible role of power-to-gas in future energy systems. 2015 12th International Conference on the European Energy Market (EEM), 2015, 1–5, 10.1109/EEM.2015.7216744.
Gabrielli, P., Gazzani, M., Martelli, E., Mazzotti, M., Optimal design of multi-energy systems with seasonal storage. Appl. Energy 219 (2018), 408–424, 10.1016/j.apenergy.2017.07.142.
Panto, M., Stochastic generation-expansion planning and diversification of energy transmission paths. Electr. Power Syst. Res. 98 (2013), 1–10, 10.1016/j.epsr.2012.12.017.
Chaudry, M., Jenkins, N., Qadrdan, M., Wu, J., Combined gas and electricity network expansion planning. Appl. Energy 113 (2014), 1171–1187, 10.1016/j.apenergy.2013.08.071.
Odetayo, B., MacCormack, J., Rosehart, W., Zareipour, H., A chance constrained programming approach to integrated planning of distributed power generation and natural gas network. Electr. Power Syst. Res. 151 (2017), 197–207, 10.1016/j.epsr.2017.05.036.
Zhao, B., Conejo, A.J., Sioshansi, R., Coordinated expansion planning of natural gas and electric power systems. IEEE Trans. Power Syst. 33:3 (2018), 3064–3075, 10.1109/TPWRS.2017.2759198.
Zhao, B., Electricity-Gas Systems: Operations and Expansion Planning Under Uncertainty (Ph.D. thesis). 2018, The Ohio State University, Columbus, Ohio, USA.
He, C., Wu, L., Liu, T., Bie, Z., Robust co-optimization planning of interdependent electricity and natural gas systems with a joint n-1 and probabilistic reliability criterion. IEEE Trans. Power Syst. 33:2 (2018), 2140–2154, 10.1109/TPWRS.2017.2727859.
Brown, D.S.T., Hörsch, J., Pypsa: Python for power system analysis. J. Open Res. Softw., 6(1), 2018, 4.
Dominkovic, D., Bacekovic, I., Cosic, B., Krajacic, G., Pukec, T., Duic, N., Markovska, N., Zero carbon energy system of South East Europe in 2050. Appl. Energy 184 (2016), 1517–1528, 10.1016/j.apenergy.2016.03.046.
Götz, M., Lefebvre, J., Mörs, F., Koch, A.M., Graf, F., Bajohr, S., Reimert, R., Kolb, T., Renewable power-to-gas: a technological and economic review. Renew. Energy 85 (2016), 1371–1390, 10.1016/j.renene.2015.07.066.
Air Liquide S.A., Technology Handbook. https://www.engineering-airliquide.com/sites/activity_eandc/files/2018/03/28/air-liquide-technology-handbook-march-2018.pdf (accessed 03.08.19).
Bonaquist, D., Analysis of Carbon Dioxide Emissions, Reductions, and Capture for Large-Scale Hydrogen Production Plants., 2018 (accessed 03.08.19) https://www.praxair.com/-/media/corporate/praxairus/documents/reports-papers-case-studies-and-presentations/our-company/sustainability/praxair-co2-emissions-reduction-capture-white-paper.pdf?la=en&rev=dc79ff3c7b4c4974a1328c7660164765.
Jechura, J., Hydrogen from Natural Gas via Steam Methane Reforming. 2015 (accessed 03.08.19) https://inside.mines.edu/jjechura/EnergyTech/07_Hydrogen_from_SMR.pdf.
Keith, D.W., Holmes, G., Angelo, D.S., Heidel, K., A process for capturing CO2 from the atmosphere. Joule 2:8 (2018), 1573–1594, 10.1016/j.joule.2018.05.006.
Rubin, E.S., Davison, J.E., Herzog, H.J., The cost of co2 capture and storage. Int. J. Greenhouse Gas Control 40 (2015), 378–400, 10.1016/j.ijggc.2015.05.018 Special Issue commemorating the 10th year anniversary of the publication of the Intergovernmental Panel on Climate Change Special Report on CO2 Capture and Storage.
N. DiOrio, A. Dobos, S. Janzou, Economic Analysis Case Studies of Battery Energy Storage with SAM. https://www.nrel.gov/docs/fy16osti/64987.pdf.
Market, T., Bennion, K., Krammer, W., Bryan, J., Giedd, J., Field Testing Plug-In Hybrid Electric Vehicles With Charge Control Technology in the Xcel Energy Territory, Tech. Rep. 2009, National Renewable Energy Laboratory, Golden, CO.
Galus, M.D., Waraich, R.A., Noembrini, F., Steurs, K., Georges, G., Boulouchos, K., Axhausen, K.W., Andersson, G., Integrating power systems, transport systems and vehicle technology for electric mobility impact assessment and efficient control. IEEE Trans. Smart Grid 3:2 (2012), 934–949, 10.1109/TSG.2012.2190628.
Pavic, I., Capuder, T., Holjevac, N., Kuzle, I., Role and impact of coordinated EV charging on flexibility in low carbon power systems. 2014 IEEE International Electric Vehicle Conference (IEVC), 2014, 1–8, 10.1109/IEVC.2014.7056172.
Elia, Electricity Scenarios for Belgium Towards 2050 – Elia's Quantified Study on the Energy Transition in 2030 and 2040. 2017 (accessed 03.08.19) https://www.elia.be//media/files/Elia/About-Elia/Studies/20171114_ELIA_4584_AdequacyScenario.pdf.
Elia, Power Generation. 2019 (accessed 03.08.19) http://www.elia.be/en/grid-data/power-generation.
Elia, Load and Load Forecasts – Total Load. 2019 (accessed 03.08.19) http://www.elia.be/en/grid-data/Load-and-Load-Forecasts/total-load.
Fluxys, Flow Data – Ex-Post Domestic Exit Point Information. 2019 (accessed 03.08.19) https://gasdata.fluxys.com/transmission-ztp-trading-services/flow-data/.
Statbel, Energy Consumption Statistics – Global Energy Balance. 2019 (accessed 03.08.19) https://bestat.statbel.fgov.be/bestat/.
Laboratory, P.N.N., Merchant Hydrogen Production in Europe. 2014 (accessed 03.08.19) https://h2tools.org/hyarc/hydrogen-data/merchant-hydrogen-production-europe.
Gysels, E., The Role of Green Hydrogen in Belgium's Future Energy System (Master's thesis). 2018, Aalborg University.
Flanders, P.I.C., Power-to-Gas, Roadmap for Flanders. 2015 (accessed 03.08.19) http://www.power-to-gas.be/roadmap-study.
Agency, E.E., EEA Greenhouse Gas – Data Viewer. 2019 (accessed 03.08.19) https://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer.
Span, R., Wagner, W., A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25:6 (1996), 1509–1596, 10.1063/1.555991.
Schröder, T., Kuckshinrichs, W., Value of lost load: An efficient economic indicator for power supply security? A literature review. Front. Energy Res., 3, 2015, 55, 10.3389/fenrg.2015.00055.
Radu, D., Berger, M., Fonteneau, R., Hardy, S., Fettweis, X., Du, M.L., Panciatici, P., Balea, L., Ernst, D., Complementarity assessment of south Greenland katabatic flows and west Europe wind regimes. Energy 175 (2019), 393–401, 10.1016/j.energy.2019.03.048.
Berger, M., Radu, D., Fonteneau, R., Henry, R., Glavic, M., Fettweis, X., Du, M.L., Panciatici, P., Balea, L., Ernst, D., Critical Time Windows for Renewable Resource Complementarity Assessment. 2018 arXiv:1812.02809.