Article (Scientific journals)
Maxbias curves of robust location estimators based on subranges
Croux, C.; Haesbroeck, Gentiane
2002In Journal of Nonparametric Statistics, 14 (3), p. 295-306
Peer Reviewed verified by ORBi
 

Files


Full Text
biastrimmean.pdf
Author postprint (300.35 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
breakdown value; maxbias curve; robustness; location estimator
Abstract :
[en] A maxbias curve is a powerful tool to describe the robustness of an estimator. It tells us how much an estimator can change due to a given fraction of contamination. In this paper, maxbias curves are computed for some univariate location estimators based on subranges: midranges, trimmed means and the univariate Minimum Volume Ellipsoid (MVE) location estimators. These estimators are intuitively appealing and easy to calculate.
Disciplines :
Mathematics
Author, co-author :
Croux, C.
Haesbroeck, Gentiane ;  Université de Liège - ULiège > Département de mathématique > Statistique (aspects théoriques)
Language :
English
Title :
Maxbias curves of robust location estimators based on subranges
Publication date :
June 2002
Journal title :
Journal of Nonparametric Statistics
ISSN :
1048-5252
eISSN :
1029-0311
Publisher :
Taylor & Francis Ltd, Abingdon, United Kingdom
Volume :
14
Issue :
3
Pages :
295-306
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 23 September 2009

Statistics


Number of views
78 (4 by ULiège)
Number of downloads
1 (1 by ULiège)

Scopus citations®
 
6
Scopus citations®
without self-citations
6
OpenCitations
 
10
OpenAlex citations
 
13

Bibliography


Similar publications



Contact ORBi