Article (Scientific journals)
Implementing the Bianco and Yohai estimator for logistic regression
Croux, C.; Haesbroeck, Gentiane
2003In Computational Statistics and Data Analysis, 44 (1-2), p. 273-295
Peer Reviewed verified by ORBi
 

Files


Full Text
CrouxHaesbroeck.pdf
Author postprint (521.14 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
robust estimation; influence function; logistic regression; maximum likelihood
Abstract :
[en] A fast and stable algorithm to compute a highly robust estimator for the logistic regression model is proposed. A criterium. for the existence of this estimator at finite samples is derived and the problem of the selection of an appropriate loss function is discussed. It is shown that the loss function can be chosen such that the robust estimator exists if and only if the maximum likelihood estimator exists. The advantages of using a weighted version of this estimator are also considered. Simulations and an example give further support for the good performance of the implemented estimators. (C) 2003 Elsevier B.V. All rights reserved.
Disciplines :
Mathematics
Computer science
Author, co-author :
Croux, C.
Haesbroeck, Gentiane ;  Université de Liège - ULiège > Département de mathématique > Statistique (aspects théoriques)
Language :
English
Title :
Implementing the Bianco and Yohai estimator for logistic regression
Publication date :
28 October 2003
Journal title :
Computational Statistics and Data Analysis
ISSN :
0167-9473
eISSN :
1872-7352
Publisher :
Elsevier Science Bv, Amsterdam, Netherlands
Volume :
44
Issue :
1-2
Pages :
273-295
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 23 September 2009

Statistics


Number of views
126 (5 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
98
Scopus citations®
without self-citations
94
OpenCitations
 
85
OpenAlex citations
 
141

Bibliography


Similar publications



Contact ORBi