Grinding kinetics; Bond test; Mineral liberation; Sulphide gold ore
Abstract :
[en] Within the scope of the evaluation and optimization of a grinding circuit, the breakage and mineral liberation characteristics of three low grade sulphide gold ore blends have been investigated by Bond tests, batch grinding tests, and mineral liberation characterization. The tests were conducted in a size range from 0.063 to 2 mm. It was found that the breakage of all blends follows a first-order behaviour for all feed sizes. The work index was correlated with the quartz content and the breakage rate deceleration parameter, which both showed a linear relationship. The correlation between breakage function fineness parameter and first-order rate constant also satisfied a linear relationship .The breakage parameters established from batch grinding and grindability studies indicate differences in the breakage behaviour of the three ore blends. However, the mineral liberation properties of the valuable phase in three blends show minor differences.
Research Center/Unit :
Technische Universität Bergakademie Freiberg, Institute of Mechanical Process Engineering and Mineral Processing
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Wikedzi, Alphonce; Technische Universität Bergakademie Freiberg > Institute of Mechanical Process Engineering and Mineral Processing
Arinanda, Muhammad ; Université de Liège - ULiège > Département ArGEnCo > Traitement et recyclage des matières minérales
Leißner, Thomas; Technische Universität Bergakademie Freiberg > Institute of Mechanical Process Engineering and Mineral Processing
Peuker, Urs Alexander; Technische Universität Bergakademie Freiberg > Institute of Mechanical Process Engineering and Mineral Processing
Mütze, Thomas; Technische Universität Bergakademie Freiberg > Institute of Mechanical Process Engineering and Mineral Processing
Language :
English
Title :
Breakage and liberation characteristics of low grade sulphide gold ore blends
Abbey, C.E., Bansah, K.J., Galecki, G., Boateng, K.A., Rock characterization and ball mill energy requirements at goldfields Ghana Limited Tarkwa gold mine. Ghana Min. J. 15 (2015), 50–57.
Austin, L.G., A review introduction to the description of grinding as a rate process. Powder Technol. 5 (1972), 1–7.
Austin, L.G., Klimpel, R.R., Luckie, P.T., Process Engineering of Size Reduction: Ball milling. 1984, SME-AIME, New York.
Austin, L.G., Luckie, P.T., Methods for determination of breakage distribution parameters. Powder Technol. 5 (1972), 215–222, 10.1016/0032-5910(72)80022-6.
Bond, F.C., The third theory of comminution. Transaction AIME (Mining) 193 (1952), 484–494.
Bond, F.C., Maxson, W.L., Standard grindability tests and calculations. Transactions 153 (1943), 362–373.
Bozkurt, V., Özgür, I., Dry grinding kinetics of colemanite. Powder Technol. 176 (2007), 88–92, 10.1016/j.powtec.2007.02.015.
Fandrich, R., Gu, Y., Burrows, D., Moeller, K., Modern SEM-based mineral liberation analysis. Int. J. Miner. Process. 84 (2007), 310–320, 10.1016/j.minpro.2006.07.018.
Gu, Y., Automated Scanning electron microscope based mineral liberation analysisan introduction to JKMRC/FEI mineral liberation analyser. Miner. Mater. Charact. Eng. 2 (2003), 33–41.
Katubilwa, F.M., Moys, M.H., Effect of ball size distribution on milling rate. Miner. Eng. 22 (2009), 1283–1288, 10.1016/j.mineng.2009.07.008.
Kelly, E.G., Spottiswood, D.J., The breakage function; What is it really?. Miner. Eng. 3 (1990), 405–414, 10.1016/0892-6875(90)90034-9.
King, R.P., 2001. Modelling and Simulation of Mineral Processing Systems. Oxford.
Leißner, T., Hoang, D.H., Rudolph, M., Heinig, T., Bachmann, K., Gutzmer, J., Schubert, H., Peuker, U.A., A mineral liberation study of grain boundary fracture based on measurements of the surface exposure after milling. Int. J. Miner. Process. 156 (2016), 3–13, 10.1016/j.minpro.2016.08.014.
Magdalinović, N., A procedure for rapid determination of the Bond work index. Int. J. Miner. Process. 27 (1989), 125–132, 10.1016/0301-7516(89)90010-0.
Makokha, A.B., Moys, M.H., Towards optimising ball-milling capacity: effect of lifter design. Miner. Eng. 19 (2006), 1439–1445, 10.1016/j.mineng.2006.03.002.
Man, Y.T., Why is the Bond Ball Mill Grindability Test done the way it is done?. Eur. J. Miner. Process. Environ. Prot. 2 (2002), 34–39.
Reid, K.J., A solution to the batch grinding equation. Chem. Eng. Sci. 20 (1965), 953–963, 10.1016/0009-2509(65)80093-8.
Sand, G.W., Subasinghe, G.K.N., A novel approach to evaluating breakage parameters and modelling batch grinding. Miner. Eng. 17 (2004), 1111–1116, 10.1016/j.mineng.2004.06.019.
Sandmann, D., 2015. Method Development in Automated Mineralogy. der Fak. für Geowissenschaften, Geotech. und Bergbau. der Technischen Universität Bergakademie Freiberg.
Sandmann, D., Gutzmer, J., Use of mineral liberation analysis (MLA) in the characterization of lithium-bearing micas. Miner. Mater. Charact. Eng. 1 (2013), 285–292, 10.4236/jmmce.2013.16043.
Sandmann, D., Haser, S., Gutzmer, J., Characterisation of graphite by automated mineral liberation analysis. Miner. Process. Extr. Metall. 123 (2014), 184–189, 10.1179/1743285514Y.0000000063.
Teke, E., Yekeler, M., Ulusoy, U., Canbazoglu, M., Kinetics of dry grinding of industrial minerals: calcite and barite. Int. J. Miner. Process. 67 (2002), 29–42, 10.1016/S0301-7516(02)00006-6.
Tromans, D., Mineral comminution: energy efficiency considerations. Miner. Eng. 21 (2008), 613–620, 10.1016/j.mineng.2007.12.003.
Umucu, Y., Haner, S., Tunay, T., The Investigation of effects of wet-dry grinding conditions and ball types on kinetic model parameters for kaolin. Polish Miner. Eng. Soc., 2015, 205–211.
Wang, E., Shi, F., Manlapig, E., Mineral liberation by high voltage pulses and conventional comminution with same specific energy levels. Miner. Eng. 27–28 (2012), 28–36, 10.1016/j.mineng.2011.12.005.
Wills, B.A., Finch, J.A., Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. 2016, Elsevier, Oxford.
Yan, D., Eaton, R., Breakage properties of ore blends. Miner. Eng. 7 (1994), 185–199, 10.1016/0892-6875(94)90063-9.