Activities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant Staphylococcus aureus.
[en] Staphylococcus aureus is an opportunistic intracellular organism. Although they poorly accumulate in eukaryotic cells, beta-lactams show activity against intracellular methicillin (methicillin)-susceptible S. aureus (MSSA) if the exposure times and the drug concentrations are sufficient. Intraphagocytic methicillin-resistant S. aureus (MRSA) strains are susceptible to penicillins and carbapenems because the acidic pH favors the acylation of PBP 2a by these beta-lactams through pH-induced conformational changes. The intracellular activity (THP-1 macrophages and keratinocytes) of ceftobiprole, which shows almost similar in vitro activities against MRSA and MSSA in broth, was examined against a panel of hospital-acquired and community-acquired MRSA strains (MICs, 0.5 to 2.0 mg/liter at pH 7.4 and 0.25 to 1.0 mg/liter at pH 5.5) and was compared with its activity against MSSA isolates. The key pharmacological descriptors {relative maximal efficacy (E(max)), relative potency (the concentration causing a reduction of the inoculum halfway between E(0) and E(max) [EC(50)]), and static concentration (C(s))} were measured. All strains showed sigmoidal dose-responses, with E(max) being about a 1 log(10) CFU decrease from the postphagocytosis inoculum, and EC(50) and C(s) being 0.2 to 0.3x and 0.6 to 0.9x the MIC, respectively. Ceftobiprole effectively competed with Bocillin FL (a fluorescent derivative of penicillin V) for binding to PBP 2a at both pH 5.5 and pH 7.4. In contrast, cephalexin, cefuroxime, cefoxitin, or ceftriaxone (i) were less potent in PBP 2a competitive binding assays, (ii) showed only partial restoration of the activity against MRSA in broth at acidic pH, and (iii) were collectively less effective against MRSA in THP-1 macrophages and were ineffective in keratinocytes. The improved activity of ceftobiprole toward intracellular MRSA compared with the activities of conventional cephalosporins can be explained, at least in part, by its greater ability to bind to PBP 2a not only at neutral but also at acidic pH.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Lemaire, Sandrine
Glupczynski, Youri
Duval, Valerie
Joris, Bernard ; Université de Liège - ULiège > Département des sciences de la vie > Physiologie et génétique bactériennes - Centre d'ingénierie des protéines
Tulkens, Paul M
Van Bambeke, Francoise
Language :
English
Title :
Activities of ceftobiprole and other cephalosporins against extracellular and intracellular (THP-1 macrophages and keratinocytes) forms of methicillin-susceptible and methicillin-resistant Staphylococcus aureus.
Publication date :
2009
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
American Society for Microbiology (ASM), Washington, United States - District of Columbia
Alexander, E. H., and M. C. Hudson. 2001. Factors influencing the internalization of Staphylococcus aureus and impacts on the course of infections in humans. Appl. Microbiol. Biotechnol. 56:361-366.
Amsler, K. M., T. A. Davies, W. Shang, M. R. Jacobs, and K. Bush. 2008. In vitro activity of ceftobiprole against pathogens from two phase 3 clinical trials of complicated skin and skin structure infections. Antimicrob. Agents Chemother. 52:3418-3423.
Anderson, S. D., and J. G. Gums. 2008. Ceftobiprole: an extended-spectrum anti-methicillin-resistant Staphylococcus aureus cephalosporin. Ann. Pharmacother. 42:806-816.
Angehrn, P., P. Hebeisen, I. Heinze-Krauss, M. Page, and V. Runtz. June 1998. Preparation of vinylpyrrolidine derivatives of cephalosporins with basic substituents, p. 1-54. European Union patent no. EP0849269.
Bamberger, D. M. 2007. Bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: the potential role of daptomycin. Ther. Clin. Risk Manag. 3:675-684.
Barcia-Macay, M., S. Lemaire, M. P. Mingeot-Leclercq, P. M. Tulkens, and F. Van Bambeke. 2006. Evaluation of the extracellular and intracellular activities (human THP-1 macrophages) of telavancin versus vancomycin against methicillin-susceptible, methicillin-resistant, vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 58:1177-1184.
Barcia-Macay, M., C. Seral, M. P. Mingeot-Leclercq, P. M. Tulkens, and F. Van Bambeke. 2006. Pharmacodynamic evaluation of the intracellular activities of antibiotics against Staphylococcus aureus in a model of THP-1 macrophages. Antimicrob. Agents Chemother. 50:841-851.
Dancer, S. J. 2008. The effect of antibiotics on methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 61:246-253.
de Lencastre, H., D. Oliveira, and A. Tomasz. 2007. Antibiotic resistant Staphylococcus aureus: a paradigm of adaptive power. Curr. Opin. Microbiol. 10:428-435.
Deresinski, S. C. 2008. The efficacy and safety of ceftobiprole in the treatment of complicated skin and skin structure infections: evidence from 2 clinical trials. Diagn. Microbiol. Infect. Dis. 61:103-109.
Fuda, C., D. Hesek, M. Lee, W. Heilmayer, R. Novak, S. B. Vakulenko, and S. Mobashery. 2006. Mechanistic basis for the action of new cephalosporin antibiotics effective against methicillin- and vancomycin-resistant Staphylococcus aureus. J. Biol. Chem. 281:10035-10041.
Gaze, W., C. O'Neill, E. Wellington, and P. Hawkey. 2008. Antibiotic resistance in the environment, with particular reference to MRSA. Adv. Appl. Microbiol. 63:249-280.
Gee, K. R., H. C. Kang, T. I. Meier, G. Zhao, and L. C. Blaszcak. 2001. Fluorescent Bocillins: synthesis and application in the detection of penicillin-binding proteins. Electrophoresis 22:960-965. (Pubitemid 32318417)
Graves-Woodward, K., and R. F. Pratt. 1998. Reaction of soluble penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus with betalactams and acyclic substrates: kinetics in homogeneous solution. Biochem. J. 332(Pt 3):755-761. (Pubitemid 28306702)
Hebeisen, P., I. Heinze-Krauss, P. Angehrn, P. Hohl, M. G. Page, and R. L. Then. 2001. In vitro and in vivo properties of Ro 63-9141, a novel broad-spectrum cephalosporin with activity against methicillin-resistant staphylococci. Antimicrob. Agents Chemother. 45:825-836.
Kluytmans-Vandenbergh, M. F., and J. A. Kluytmans. 2006. Community-acquired methicillin-resistant Staphylococcus aureus: current perspectives. Clin. Microbiol. Infect. 12(Suppl. 1):9-15.
Lemaire, S., C. Fuda, F. Van Bambeke, P. M. Tulkens, and S. Mobashery. 2008. Restoration of susceptibility of methicillin-resistant Staphylococcus aureus to beta-lactam antibiotics by acidic pH: role of penicillin-binding protein PBP 2a. J. Biol. Chem. 283:12769-12776.
Lemaire, S., A. Olivier, F. Van Bambeke, P. M. Tulkens, P. C. Appelbaum, and Y. Glupczynski. 2008. Restoration of susceptibility of intracellular methicillin-resistant Staphylococcus aureus to beta-lactams: comparison of strains, cells, and antibiotics. Antimicrob. Agents Chemother. 52:2797-2805.
Lemaire, S., F. Van Bambeke, M. P. Mingeot-Leclercq, Y. Glupczynski, and P. M. Tulkens. 2007. Role of acidic pH in the susceptibility of intraphagocytic methicillin-resistant Staphylococcus aureus strains to meropenem and cloxacillin. Antimicrob. Agents Chemother. 51:1627-1632.
Lemaire, S., F. Van Bambeke, M. P. Mingeot-Leclercq, and P. M. Tulkens. 2005. Activity of three β-lactams (ertapenem, meropenem and ampicillin) against intraphagocytic Listeria monocytogenes and Staphylococcus aureus. J. Antimicrob. Chemother. 55:897-904.
Leonard, F. C., and B. K. Markey. 2008. Meticillin-resistant Staphylococcus aureus in animals: a review. Vet. J. 175:27-36. (Pubitemid 351187517)
Lovering, A., F. Danel, M. G. P. Page, and N. J. Strynadka. 2006. Mechanism of action of ceftobiprole: structural basis for the anti-MRSA activity, abstr. 1506. Program Abstr. 16th Eur. Conf. Clin. Microbiol. Infect.
Lowy, F. D. 2000. Is Staphylococcus aureus an intracellular pathogen? Trends Microbiol. 8:341-343.
Mempel, M., C. Schnopp, M. Hojka, H. Fesq, S. Weidinger, M. Schaller, H. C. Korting, J. Ring, and D. Abeck. 2002. Invasion of human keratinocytes by Staphylococcus aureus and intracellular bacterial persistence represent haemolysin-independent virulence mechanisms that are followed by features of necrotic and apoptotic keratinocyte cell death. Br. J. Dermatol. 146:943-951.
Mouton, J. W., A. Schmitt-Hoffmann, S. Shapiro, N. Nashed, and N. C. Punt. 2004. Use of Monte Carlo simulations to select therapeutic doses and provisional breakpoints of BAL9141. Antimicrob. Agents Chemother. 48:1713-1718.
Noel, G. J., K. Bush, P. Bagchi, J. Ianus, and R. S. Strauss. 2008. A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections. Clin. Infect. Dis. 46:647-655.
Page, M. G. 2007. Emerging cephalosporins. Expert Opin. Emerg. Drugs 12:511-524.
Pantosti, A., A. Sanchini, and M. Monaco. 2007. Mechanisms of antibiotic resistance in Staphylococcus aureus. Future Microbiol. 2:323-334. (Pubitemid 47180928)
Preston, D. A., C. Y. Wu, L. C. Blaszczak, D. E. Seitz, and N. G. Halligan. 1990. Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins. Antimicrob. Agents Chemother. 34:718-721.
Sabath, L. D., S. J. Wallace, and D. A. Gerstein. 1972. Suppression of intrinsic resistance to methicillin and other penicillins in Staphylococcus aureus. Antimicrob. Agents Chemother. 2:350-355.
Sakoulas, G., and R. C. Moellering, Jr. 2008. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin. Infect. Dis. 46(Suppl. 5):S360-S367.
Sandberg, A., J. H. R. Hessler, R. L. Skov, J. Blom, and N. Frimødt-Moller. 2009. Intracellular activity of antibiotics against Staphylococcus aureus in a mouse peritonitis model. Antimicrob. Agents Chemother. 53:1874-1883.
Seral, C., F. Van Bambeke, and P. M. Tulkens. 2003. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob. Agents Chemother. 47:2283-2292.
Sinha, B., and M. Herrmann. 2005. Mechanism and consequences of invasion of endothelial cells by Staphylococcus aureus. Thromb. Haemost. 94: 266-277.
Stryjewski, M. E., and H. F. Chambers. 2008. Skin and soft-tissue infections caused by community-acquired methicillin-resistant Staphylococcus aureus. Clin. Infect. Dis. 46(Suppl. 5):S368-S377.
Tulkens, P. M. 1991. Intracellular distribution and activity of antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 10:100-106.
Utsui, Y., and T. Yokota. 1985. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 28:397-403.
Van Bambeke, F., M. Barcia-Macay, S. Lemaire, and P. M. Tulkens. 2006. Cellular pharmacodynamics and pharmacokinetics of antibiotics: current views and perspectives. Curr. Opin. Drug Discov. Dev. 9:218-230.
Villegas-Estrada, A., M. Lee, D. Hesek, S. B. Vakulenko, and S. Mobashery. 2008. Co-opting the cell wall in fighting methicillin-resistant Staphylococcus aureus: potent inhibition of PBP 2a by two anti-MRSA beta-lactam antibiotics. J. Am. Chem. Soc. 130:9212-9213.
Vonk, A. G., and C. M. Vandenbroucke-Grauls. 2007. Methicillin-resistant Staphylococcus aureus (MRSA) in the community. Ned. Tijdschr. Geneeskd. 151:401-407. (In Dutch.)
Wijaya, L., L. Y. Hsu, and A. Kurup. 2006. Community-associated methicillin-resistant Staphylococcus aureus: overview and local situation. Ann. Acad. Med. Singapore 35:479-486.
Zbinden, R., V. Punter, and A. von Graevenitz. 2002. In vitro activities of BAL9141, a novel broad-spectrum pyrrolidinone cephalosporin, against gram-negative nonfermenters. Antimicrob. Agents Chemother. 46:871-874.
Zhanel, G. G., A. Lam, F. Schweizer, K. Thomson, A. Walkty, E. Rubinstein, A. S. Gin, D. J. Hoban, A. M. Noreddin, and J. A. Karlowsky. 2008. Ceftobiprole: a review of a broad-spectrum and anti-MRSA cephalosporin. Am. J. Clin. Dermatol. 9:245-254.