Asseng, S.; Agricultural & Biological Engineering Department, University of Florida, Gainesville, FL, United States
Martre, P.; LEPSE, Université Montpellier INRA, Montpellier SupAgro, Montpellier, France
Maiorano, A.; LEPSE, Université Montpellier INRA, Montpellier SupAgro, Montpellier, France, European Food Safety Authority, Parma, Italy
Rötter, R. P.; Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany, Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
O’Leary, G. J.; Department of Economic Development Jobs, Transport and Resources, Grains Innovation Park, Agriculture Victoria Research, Horsham, VIC, Australia
Fitzgerald, G. J.; Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, Horsham, VIC, Australia, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, VIC, Australia
Girousse, C.; UMR GDEC, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
Motzo, R.; Department of Agricultural Sciences, University of Sassari, Sassari, Italy
Giunta, F.; Department of Agricultural Sciences, University of Sassari, Sassari, Italy
Babar, M. A.; World Food Crops Breeding, Department of Agronomy, IFAS, University of Florida, Gainesville, FL, United States
Reynolds, M. P.; CIMMYT Int, Mexico D.F, Mexico
Kheir, A. M. S.; Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
Thorburn, P. J.; CSIRO Agriculture and Food, Brisbane, QLD, Australia
Waha, K.; CSIRO Agriculture and Food, Brisbane, QLD, Australia
Ruane, A. C.; NASA Goddard Institute for Space Studies, New York, NY, United States
Aggarwal, P. K.; CGIAR Research Program on Climate Change, Agriculture and Food Security, BISA-CIMMYT, New Delhi, India
Ahmed, M.; Biological Systems Engineering, Washington State University, Pullman, WA, United States, Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
Balkovič, J.; International Institute for Applied Systems Analysis, Ecosystem Services and Management Program, Laxenburg, Austria, Department of Soil Science, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
Basso, B.; Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States, W.K. Kellogg Biological Station, Michigan State University, East Lansing, MI, United States
Biernath, C.; Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
Bindi, M.; Department of Agri-food Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
Cammarano, D.; James Hutton Institute, Dundee, Scotland, United Kingdom
Challinor, A. J.; Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom, Collaborative Research Program from CGIAR and Future Earth on Climate Change, Agriculture and Food Security (CCAFS), International Centre for Tropical Agriculture (CIAT), Cali, Colombia
De Sanctis, G.; GMO Unit, European Food Safety Authority, Parma, Italy
Dumont, Benjamin ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Eyshi Rezaei, E.; Institute of Crop Science and Resource Conservation INRES, University of Bonn, Bonn, Germany, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
Fereres, E.; IAS-CSIC, University of Cordoba, Cordoba, Spain
Ferrise, R.; Department of Agri-food Production and Environmental Sciences (DISPAA), University of Florence, Florence, Italy
Garcia-Vila, M.; IAS-CSIC, University of Cordoba, Cordoba, Spain
Gayler, S.; Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
Gao, Y.; Agricultural & Biological Engineering Department, University of Florida, Gainesville, FL, United States
Horan, H.; CSIRO Agriculture and Food, Brisbane, QLD, Australia
Hoogenboom, G.; Agricultural & Biological Engineering Department, University of Florida, Gainesville, FL, United States, Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, United States
Izaurralde, R. C.; Department of Geographical Sciences, University of Maryland, College Park, MD, United States, Texas A&M AgriLife Research and Extension Center, Texas A&M University, Temple, TX, United States
Jabloun, M.; Department of Agroecology, Aarhus University, Tjele, Denmark
Jones, C. D.; Department of Geographical Sciences, University of Maryland, College Park, MD, United States
Kassie, B. T.; Agricultural & Biological Engineering Department, University of Florida, Gainesville, FL, United States
Kersebaum, K.-C.; Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
Klein, C.; Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
Koehler, A.-K.; Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Liu, B.; Agricultural & Biological Engineering Department, University of Florida, Gainesville, FL, United States, National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
Minoli, S.; Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
Montesino San Martin, M.; Plant & Environment Sciences, University Copenhagen, Taastrup, Denmark
Müller, C.; Potsdam Institute for Climate Impact Research, Member of the Leibniz Association, Potsdam, Germany
Naresh Kumar, S.; Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, IARI PUSA, New Delhi, India
Nendel, C.; Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
Olesen, J. E.; Department of Agroecology, Aarhus University, Tjele, Denmark
Palosuo, T.; Montpellier SupAgro, INRA, CIHEAM–IAMM, CIRAD, University Montpellier, Montpellier, France
Porter, J. R.; Plant & Environment Sciences, University Copenhagen, Taastrup, Denmark, Lincoln University, Lincoln, New Zealand, Montpellier SupAgro, INRA, CIHEAM–IAMM, CIRAD, University Montpellier, Montpellier, France
Priesack, E.; Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
Ripoche, D.; US AgroClim, INRA, Paris, France
Semenov, M. A.; Rothamsted Research, Harpenden, United Kingdom
Stöckle, C.; Biological Systems Engineering, Washington State University, Pullman, WA, United States
Stratonovitch, P.; Rothamsted Research, Harpenden, United Kingdom
Streck, T.; Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
Supit, I.; Water & Food and Water Systems & Global Change Group, Wageningen University, Wageningen, Netherlands
Tao, F.; Natural Resources Institute Finland (Luke), Helsinki, Finland, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, China
Van der Velde, M.; Joint Research Centre, European Commission, Ispra, Italy
Wallach, D.; INRA UMR AGIR, Castanet-Tolosan, France
Wang, E.; CSIRO Agriculture and Food, Canberra, ACT, Australia
Webber, H.; Institute of Crop Science and Resource Conservation INRES, University of Bonn, Bonn, Germany, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
Wolf, J.; Plant Production Systems, Wageningen University, Wageningen, Netherlands
Xiao, L.; National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
Zhang, Z.; State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Zhao, Zhigan
Zhu, Y.; National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
Ewert, F.; Institute of Crop Science and Resource Conservation INRES, University of Bonn, Bonn, Germany, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. New Phytologist, 165, 351–371. https://doi.org/10.1111/j.1469-8137.2004.01224.x
Allen, M. R., & Ingram, W. J. (2002). Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224–232. https://doi.org/10.1038/nature01092
Anderson, W., You, L., Wood, S., Wood-Sichra, U., & Wu, W. B. (2015). An analysis of methodological and spatial differences in global cropping systems models and maps. Global Ecology and Biogeography, 24, 180–191. https://doi.org/10.1111/geb.12243
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., … Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5, 143–147. https://doi.org/10.1038/nclimate2470
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. W., Ruane, A. C., … Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3, 827–832. https://doi.org/10.1038/nclimate1916
Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17, 997–1012. https://doi.org/10.1111/j.1365-2486.2010.02262.x
Asseng, S., & Milroy, S. P. (2006). Simulation of environmental and genetic effects on grain protein concentration in wheat. European Journal of Agronomy, 25, 119–128. https://doi.org/10.1016/j.eja.2006.04.005
Asseng, S., Van Keulen, H., & Stol, W. (2000). Performance and application of the APSIM Nwheat model in the Netherlands. European Journal of Agronomy, 12, 37–54. https://doi.org/10.1016/S1161-0301(99)00044-1
Avni, R., Zhao, R., Pearce, S., Jun, Y., Uauy, C., Tabbita, F., … Distelfeld, A. (2014). Functional characterization of GPC-1 genes in hexaploid wheat. Planta, 239, 313–324. https://doi.org/10.1007/s00425-013-1977-y
Bajželj, B., Richards, K. S., Allwood, J. M., Smith, P., Dennis, J. S., Curmi, E., & Gilligan, C. A. (2014). Importance of food-demand management for climate mitigation. Nature Climate Change, 4, 924–929. https://doi.org/10.1038/nclimate2353
Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., … Waha, K. (2014). How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 20, 2301–2320. https://doi.org/10.1111/gcb.12520
Bloom, A. J., Burger, M., Rubio-Asensio, J. S., & Cousins, A. B. (2010). Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science, 328, 899–903. https://doi.org/10.1126/science.1186440
Bogard, M., Jourdan, M., Allard, V., Martre, P., Perretant, M. R., Ravel, C., … Le Gouis, J. (2011). Anthesis date mainly explained correlations between post-anthesis leaf senescence, grain yield, and grain protein concentration in a winter wheat population segregating for flowering time QTLs. Journal of Experimental Botany, 62, 3621–3636. https://doi.org/10.1093/jxb/err061
Brisson, N., Gate, P., Gouache, D., Charmet, G., Oury, F.-X., & Huard, F. (2010). Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Research, 119, 201–212. https://doi.org/10.1016/j.fcr.2010.07.012
Broberg, M. C., Högy, P., & Pleijel, H. (2017). CO 2 -Induced changes in wheat grain composition: Meta-analysis and response functions. Agronomy, 7, 32. https://doi.org/10.3390/agronomy7020032
Charmet, G., Robert, N., Branlard, G., Linossier, L., Martre, P., & Triboï, E. (2005). Genetic analysis of dry matter and nitrogen accumulation and protein composition in wheat kernels. Theoretical and Applied Genetics, 111, 540–550. https://doi.org/10.1007/s00122-005-2045-1
Chenu, K., Porter, J. R., Martre, P., Basso, B., Chapman, S. C., Ewert, F., … Asseng, S. (2017). Contribution of crop models to adaptation in wheat. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2017.02.003
Ewert, F., Van Ittersum, M., Heckelei, T., Therond, O., Bezlepkina, I., & Andersen, E. (2011). Scale changes and model linking methods for integrated assessment of agri-environmental systems. Agriculture, Ecosystems & Environment, 142, 6–17. https://doi.org/10.1016/j.agee.2011.05.016
Ewert, F., vanBussel, L. G. J., Zhao, G., Hoffmann, H., Gaiser, T., Specka, X., … Moriondo, M. (2015). Uncertainties in Scaling up Crop Models for Large Area Climate Change Impact Assessments. In C. Rosenzweig, & D. Hillel (Eds.), Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) (pp 261–277). Singapore, Singapore: World Scientific Publishing
FAO. (2016) Food and Agriculture Organization of the United Nations. Retrieved from https://fao.org. (Accessed 15 June 2016)
FAO. (2018). Food and Agriculture Organization of the United Nations. Retrieved from https://fao.org. (Accessed, 10 September, 2018)
Fitzgerald, G. J., Tausz, M., O'Leary, G., Mollah, M. R., Tausz-Posch, S., Seneweera, S., … Norton, R. M. (2016). Elevated atmospheric [CO2] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Global Change Biology, 22, 2269–2284
Gbegbelegbe, S., Cammarano, D., Asseng, S., Robertson, R., Chung, U., Adam, M., … Nelson, G. (2017). Baseline simulation for global wheat production with CIMMYT mega-environment specific cultivars. Field Crops Research, 202, 122–135. https://doi.org/10.1016/j.fcr.2016.06.010
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., … Toulmin, C. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327, 812–818. https://doi.org/10.1126/science.1185383
Griffiths, S., Simmonds, J., Leverington, M., Wang, Y., Fish, L., Sayers, L., … Snape, J. (2009). Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theoretical and Applied Genetics, 119, 383–395. https://doi.org/10.1007/s00122-009-1046-x
Haddad, L., Hawkes, C., Webb, P., Thomas, S., Beddington, J., Waage, J., & Flynn, D. (2016). A new global research agenda for food. Nature, 540, 30–32. https://doi.org/10.1038/540030a
Kimball, B. A. (2016). Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology, 31, 36–43. https://doi.org/10.1016/j.pbi.2016.03.006
Kimball, B. A., Lamorte, R. L., Pinter, P. J. Jr, et al. (1999). Free-air CO 2 enrichment and soil nitrogen effects on energy balance and evapotranspiration of wheat. Water Resources Research, 35, 1179–1190
LeGouis, J., Bordes, J., Ravel, C., Heumez, E., Faure, S., Praud, S., … Rousset, M. (2012). Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theoretical and Applied Genetics, 124, 597–611. https://doi.org/10.1007/s00122-011-1732-3
Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21, 1328–1341. https://doi.org/10.1111/gcb.12758
Liu, B., Asseng, S., Muller, C., Ewert, F., Elliott, J., Lobell, D. B., … Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature. Climate Change, 6, 1130-+
Majoul-Haddad, T., Bancel, E., Martre, P., Triboi, E., & Branlard, G. (2013). Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. Journal of Cereal Science, 57, 486–495. https://doi.org/10.1016/j.jcs.2013.02.003
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., … Wolf, J. (2015). Multimodel ensembles of wheat growth: Many models are better than one. Global Change Biology, 21, 911–925. https://doi.org/10.1111/gcb.12768
Mcsweeney, C. F., & Jones, R. G. (2016). How representative is the spread of climate projections from the 5 CMIP5 GCMs used in ISI-MIP? Climate Services, 1, 24–29. https://doi.org/10.1016/j.cliser.2016.02.001
Mollah, M., Norton, R., & Huzzey, J. (2009). Australian Grains Free Air Carbon dioxide Enrichment (AGFACE) facility: Design and performance. Crop and Pasture Science, 60, 697–707. https://doi.org/10.1071/CP08354
Monfreda, C., Ramankutty, N., & Foley, J. A. (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles, 22, GB1022
Myers, S. S., Zanobetti, A., Kloog, I., Huybers, P., Leakey, A. D. B., Bloom, A. J., … Usui, Y. (2014). Increasing CO 2 threatens human nutrition. Nature, 510, 139–142. https://doi.org/10.1038/nature13179
O'Leary, G. J., Christy, B., Nuttall, J., Huth, N., Cammarano, D., Stöckle, C., … Asseng, S. (2015). Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Global Change Biology, 21, 2670–2686
Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvåg, A. O., Seguin, B., Peltonen-Sainio, P., … Micale, F. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34, 96–112. https://doi.org/10.1016/j.eja.2010.11.003
Peltonen-Sainio, P., Salo, T., Jauhiainen, L., Lehtonen, H., & Sievilainen, E. (2015). Static yields and quality issues: Is the agri-environment program the primary driver? Ambio, 44, 544–556. https://doi.org/10.1007/s13280-015-0637-9
Pleijel, H., & Uddling, J. (2012). Yield vs. Quality trade-offs for wheat in response to carbon dioxide and ozone. Global Change Biology, 18, 596–605. https://doi.org/10.1111/j.1365-2486.2011.2489.x
Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., … Travasso, M. I. (2014). Food security and food production systems. In V. R. Barros, C. B. Field, D. J. Dokken, M. D. Mastrandrea, K. J. Mach, T. E. Bilir, M. Chatterjee, K. l. Ebi, R. C. Yo Estrada, B. G. Genova, E. S. Kissel, A. N. Levy, S. Maccracken, P. R. Mastrandrea, & L. l. White (Eds.), Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 485–533). Cambridge, UK; New York, NY: Cambridge University Press
Porwollik, V., Müller, C., Elliott, J., Chryssanthacopoulos, J., Iizumi, T., Ray, D. K., … Wu, X. (2017). Spatial and temporal uncertainty of crop yield aggregations. European Journal of Agronomy, 88, 10–21. https://doi.org/10.1016/j.eja.2016.08.006
Reynolds, M. P., Balota, M., Delgado, M. I. B., Amani, I., & Fischer, R. A. (1994). Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Australian Journal of Plant Physiology, 21, 717–730. https://doi.org/10.1071/PP9940717
Reynolds, M., & Braun, H. (2013). In M. Reynolds, & H. Braun (Eds.), Archiving yield gains in Wheat: Overview. CENEB, CIMMYT. In: Proceedings of the 3rd International Workshop of Wheat Yield Consortium. Obregon, Sonora, Mexico: CIMMYT
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., … Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111, 3268–3273. https://doi.org/10.1073/pnas.1222463110
Rosenzweig, C., Jones, J. W., Hatfield, J. l., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2013). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 170, 166–182. https://doi.org/10.1016/j.agrformet.2012.09.011
Roser, M., & Ortiz-Ospina, E. (2017). OurWorldInData.org. Retrieved from https://ourworldindata.org/world-population-growth/
Ruane, A. C., Goldberg, R., & Chryssanthacopoulos, J. (2015). Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology, 200, 233–248
Ruane, A. C., & Mcdermid, S. P. (2017). Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspectives, 4, 1. https://doi.org/10.1186/s40322-017-0036-4
Ruane, A. C., Winter, J. M., Mcdermid, S. P., & Hudson, N. I. (2015). AgMIP climate data and scenarios for integrated assessment. In C. Rosenzweig, & D. Hillel, (Eds.). Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (pp. 45–78). London, UK: Imperial College Press
Ruiz-Ramos, M., Ferrise, R., Rodríguez, A., Lorite, I. J., Bindi, M., Carter, T. C., … Rotter, R. P. (2017). Adaptation response surfaces for managing wheat under perturbed climate and CO2 in a Mediterranean environment. Agricultural Systems, 159, 260-274
Semenov, M. A., & Stratonovitch, P. (2015). Adapting wheat ideotypes for climate change: Accounting for uncertainties in CMIP5 climate projections. Climate Research, 65, 123–139. https://doi.org/10.3354/cr01297
Shewry, P. R., & Halford, N. G. (2002). Cereal seed storage proteins: Structures, properties and role in grain utilization. Journal of Experimental Botany, 53, 947–958. https://doi.org/10.1093/jexbot/53.370.947
Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. Food and Energy Security, 4, 178–202. https://doi.org/10.1002/fes3.64
Tao, F., Feng, Z., Tang, H., Chen, Y., & Kobayashi, K. (2017). Effects of climate change, CO2 and O3 on wheat productivity in Eastern China, singly and in combination. Atmospheric Environment, 153, 182–193
Tao, F., Rotter, R. P., Palosuo, T., Diaz-Ambrona, C. G. H., Minguez, M. I., Semenov, M. A., … Schulma, A. H. (2017). Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 82, 144–162
Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260–20264. https://doi.org/10.1073/pnas.1116437108
Triboi, E., Martre, P., Girousse, C., Ravel, C., & Triboi-Blondel, A. (2006). Unravelling environmental and genetic relationships between grain yield and nitrogen concentration for wheat. European Journal of Agronomy, 25, 108–118. https://doi.org/10.1016/j.eja.2006.04.004
Triboi, E., & Triboi-Blondel, A.-M. (2002). Productivity and grain or seed composition: A new approach to an old problem—invited paper. European Journal of Agronomy, 16, 163–186. https://doi.org/10.1016/S1161-0301(01)00146-0
Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., & Dubcovsky, J. (2006). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314, 1298–1301. https://doi.org/10.1126/science.1133649
Underdahl, J. L., Mergoum, M., Schatz, B., & Ransom, J. K. (2008). Quality trait variation in major hard red spring wheat cultivars released in North Dakota since 1968. Cereal Chemistry, 85, 509–516. https://doi.org/10.1094/CCHEM-85-4-0507
Van Bussel, L. G. J., Grassini, P., Wart, V., Justin, W., Joost, C., Lieven, Y., … Van Ittersum, M. K. (2015). From field to atlas: Upscaling of location-specific yield gap estimates. Field Crops Research, 177, 98–108. https://doi.org/10.1016/j.fcr.2015.03.005
Van Bussel, V., Lenny, G. J., Ewert, F., Zhao, G., Hoffmann, H., Enders, A., … Tao, F. (2016). Spatial sampling of weather data for regional crop yield simulations. Agricultural and Forest Meteorology, 220, 101–115. https://doi.org/10.1016/j.agrformet.2016.01.014
Vogel, K. P., Johnson, V. A., & Mattern, P. J. (1976). Protein and lysine content of grain, endosperm, and bran of wheats from USDA World wheat collection. Crop Science, 16, 655–660
Waha, K., Muller, C., Bondeau, A., Dietrich, J. P., Kurukulasuriya, P., Heinke, J., & Lotze-Campen, H. (2013). Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa. Global Environmental Change-Human and Policy Dimensions, 23, 130–143. https://doi.org/10.1016/j.gloenvcha.2012.11.001
Wang, R., Hai, L., Zhang, X., You, G., Yan, C., & Xiao, S. (2009). QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai× Yu8679. Theoretical and Applied Genetics, 118, 313–325
Wheeler, T. R., Batts, G. R., Ellis, R. H., Hadley, P., & Morison, J. I. L. (1996). Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. Journal of Agricultural Science, 127, 37–48. https://doi.org/10.1017/S0021859600077352
Wheeler, T., & Von Braun, J. (2013). Climate change impacts on global food security. Science, 341, 508–513. https://doi.org/10.1126/science.1239402
Wieser, H., Manderscheid, R., Erbs, M., & Weigel, H. J. (2008). Effects of elevated atmospheric CO2 concentrations on the quantitative protein composition of wheat grain. Journal of Agricultural and Food Chemistry, 56, 6531–6535
Yang, X., Wu, L., Zhu, Z., Ren, G., & Liu, S. (2014). Variation and trends in dough rheological properties and flour quality in 330 Chinese wheat varieties. The Crop Journal, 2, 195–200
Zhao, G., Hoffmann, H., Yeluripati, J., Xenia, S., Nendel, C., Coucheney, E., … Ewert, F. (2016). Evaluating the precision of eight spatial sampling schemes in estimating regional mean of simulated yields for two crops. Environmental Modelling and Software, 80, 100–112
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.