Wallach, D.; UMR AGIR, INRA, Castanet-Tolosan, 31326, France
Martre, P.; UMR LEPSE, INRA, Montpellier SupAgro, Montpellier, France
Liu, B.; National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China, Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, United States
Asseng, S.; Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, United States
Ewert, F.; Institute of Crop Science and Resource Conservation INRES, University of, Bonn, Germany, Germany, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
Thorburn, P. J.; CSIRO Agriculture and Food Brisbane, St Lucia, QLD, Australia
van Ittersum, M.; Plant Production Systems Group, Wageningen University, Wageningen, Netherlands
Aggarwal, P. K.; CGIAR Research Program on Climate Change, Agriculture and Food Security, BISA-CIMMYT, New Delhi, India
Ahmed, M.; Biological Systems Engineering, Washington State University, Pullman, WA, United States, Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
Basso, B.; Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States, W.K. Kellogg Biological Station, Michigan State University, East Lansing, MI, United States
Biernath, C.; Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
Cammarano, D.; James Hutton Institute Invergowrie, Dundee, United Kingdom
Challinor, A. J.; Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom, CGIAR-ESSP Program on Climate Change, Agriculture and Food Security, International Centre for Tropical Agriculture (CIAT), Cali, Colombia
De Sanctis, G.; European Food Safety Authority, GMO Unit, Parma, Italy
Dumont, Benjamin ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Eyshi Rezaei, E.; Institute of Crop Science and Resource Conservation INRES, University of, Bonn, Germany, Germany, Center for Development Research (ZEF), Bonn, Germany
Fereres, E.; IAS-CSIC and University of Cordoba, Cordoba, Spain
Fitzgerald, G. J.; Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, Ballarat, VIC, Australia, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, VIC, Australia
Gao, Y.; Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, United States
Garcia-Vila, M.; IAS-CSIC and University of Cordoba, Cordoba, Spain
Gayler, S.; Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
Girousse, C.; UMR GDEC, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
Hoogenboom, G.; Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, United States, Institute for Sustainable Food Systems, University of Florida, Gainesville, FL, United States
Horan, H.; CSIRO Agriculture and Food Brisbane, St Lucia, QLD, Australia
Izaurralde, R. C.; Department of Geographical Sciences, University of Maryland, College Park, MD, United States, Texas A&M AgriLife Research and Extension Center, Texas A&M University, Temple, TX, United States
Jones, C. D.; Texas A&M AgriLife Research and Extension Center, Texas A&M University, Temple, TX, United States
Kassie, B. T.; Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL, United States
Kersebaum, K. C.; Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
Klein, C.; Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
Koehler, A.-K.; Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
Maiorano, A.; UMR LEPSE, INRA, Montpellier SupAgro, Montpellier, France, European Food Safety Authority—EFSA, Parma, Italy
Minoli, S.; Potsdam Institute for Climate Impact Research, Potsdam, Germany
Müller, C.; Potsdam Institute for Climate Impact Research, Potsdam, Germany
Naresh Kumar, S.; Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, IARI PUSA, New Delhi, India
Nendel, C.; Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
O'Leary, G. J.; Grains Innovation Park, Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, Horsham, VIC, Australia
Palosuo, T.; Natural Resources Institute Finland (Luke), Helsinki, Finland
Priesack, E.; Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
Ripoche, D.; US AgroClim, INRA, Avignon, France
Rötter, R. P.; Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany, Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany
Semenov, M. A.; Computational and Systems Biology Department, Rothamsted Research, Harpenden, Herts, United Kingdom
Stöckle, C.; Biological Systems Engineering, Washington State University, Pullman, WA, United States
Stratonovitch, P.; Computational and Systems Biology Department, Rothamsted Research, Harpenden, Herts, United Kingdom
Streck, T.; Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
Supit, I.; Water & Food and Water Systems & Global Change Group, Wageningen University, Wageningen, Netherlands
Tao, F.; Natural Resources Institute Finland (Luke), Helsinki, Finland, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, China
Wolf, J.; Plant Production Systems, Wageningen University, Wageningen, Netherlands
Zhang, Z.; State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
Asseng, S., Ewert, F., Martre, P., Rosenzweig, C., Jones, J., Hatfield, J., … Wolf, J. (2015). Benchmark data set for wheat growth models: field experiments and AgMIP multi-model simulations. Open Data Journal for Agricultural Research, 1(1), 1–5. https://doi.org/10.18174/odjar.v1i1.14746
Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., … Zhu, Y. (2015). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147. https://doi.org/10.1038/nclimate2470
Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., … Wolf, J. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3(9), 827–832. https://doi.org/10.1038/nclimate1916
Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., … Waha, K. (2014). How do various maize crop models vary in their responses to climate change factors? Global Change Biology, 20(7), 2301–2320. https://doi.org/10.1111/gcb.12520
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01
Chenu, K., Porter, J. R., Martre, P., Basso, B., Chapman, S. C., Ewert, F., … Asseng, S. (2017). Contribution of crop models to adaptation in wheat. Trends in Plant Science, https://doi.org/10.1016/j.tplants.2017.02.003
DelSole, T., Jia, L., Tippett, M. K., DelSole, T., Jia, L., & Tippett, M. K. (2013). Scale-selective ridge regression for multimodel forecasting. Journal of Climate, 26(20), 7957–7965. https://doi.org/10.1175/JCLI-D-13-00030.1
DelSole, T., Nattala, J., & Tippett, M. K. (2014). Skill improvement from increased ensemble size and model diversity. Geophysical Research Letters, 41(20), 7331–7342. https://doi.org/10.1002/2014GL060133
Duan, Q., Ajami, N. K., Gao, X., & Sorooshian, S. (2007). Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30(5), 1371–1386. https://doi.org/10.1016/j.advwatres.2006.11.014
Ewert, F., Rötter, R. P., Bindi, M., Webber, H., Trnka, M., Kersebaum, K. C., … Asseng, S. (2015). Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling & Software, 72, 287–303. https://doi.org/10.1016/j.envsoft.2014.12.003
Fleisher, D. H., Condori, B., Quiroz, R., Alva, A., Asseng, S., Barreda, C., … Woli, P. (2017). A potato model intercomparison across varying climates and productivity levels. Global Change Biology, 23(3), 1258–1281. https://doi.org/10.1111/gcb.13411
Folberth, C., Elliott, J., Müller, C., Balkovic, J., Chryssanthacopoulos, J., Izaurralde, R. C., … Wang, X. (2016). Uncertainties in global crop model frameworks: Effects of cultivar distribution, crop management and soil handling on crop yield estimates. Biogeosciences Discussions, 1–30. https://doi.org/10.5194/bg-2016-527
Hagedorn, R., Doblas-Reyes, F. J., & Palmer, T. N. (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A, 57, 219–233.
Hasegawa, T., Li, T., Yin, X., Zhu, Y., Boote, K., Baker, J., … Zhu, J. (2017). Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments. Scientific Reports, 7(1), https://doi.org/10.1038/s41598-017-13582-y
IPCC. (2014). Summary for policy makers. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. Mastrandrea, T. E. Bilir, … L. L. White (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1–32). Cambridge, UK and New York, NY, USA: Cambridge University Press.
Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M., … Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Global Change Biology, 21(3), 1328–1341. https://doi.org/10.1111/gcb.12758
Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B., … Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), https://doi.org/10.1038/nclimate3115
Maiorano, A., Martre, P., Asseng, S., Ewert, F., Müller, C., Rötter, R. P., … Zhu, Y. (2016). Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, https://doi.org/10.1016/j.fcr.2016.05.001
Majoul-Haddad, T., Bancel, E., Martre, P., Triboi, E., & Branlard, G. (2013). Effect of short heat shocks applied during grain development on wheat (Triticum aestivum L.) grain proteome. Journal of Cereal Science, 57(3), 486–495. https://doi.org/10.1016/j.jcs.2013.02.003
Martre, P., Reynolds, M. P., Asseng, S., Awer, F., Alderman, D. P., Cammarano, D. C., … Al, E. (2017). The international heat stress genotype experiment for modeling wheat response to heat: Field experiments and AgMIP-Wheat multi-model simulations. Open Data Journal for Agricultural Research, 3, 23–28.
Martre, P., Wallach, D., Asseng, S., Ewert, F., Jones, J. W., Rötter, R. P., … Wolf, J. (2015). Multimodel ensembles of wheat growth: Many models are better than one. Global Change Biology, 21(2), 911–925. https://doi.org/10.1111/gcb.12768
O'Leary, G. J., Christy, B., Nuttall, J., Huth, N., Cammarano, D., Stöckle, C., … Asseng, S. (2015). Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Global Change Biology, 21(7), 2670–2686. https://doi.org/10.1111/gcb.12830
Palosuo, T., Kersebaum, K. C., Angulo, C., Hlavinka, P., Moriondo, M., Olesen, J. E., … Rötter, R. (2011). Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 35(3), 103–114. https://doi.org/10.1016/j.eja.2011.05.001
Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., … Travasso, M. I. (2014). Food security and food production systems. In C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, … L. L. White (Eds.), Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 485–533). Cambridge, United Kingdomand New York, NY, USA: Cambridge University Press.
R Core Team. (2012). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-project.org/
Raftery, A. E., Balabdaoui, F., Gneiting, T., & Polakowski, M. (2003). Using Bayesian Model Averaging to Calibrate Forecast Ensembles. Retrieved from http://www.stat.washington.edu/www/research/reports/2003/tr440.pdf
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., … Jones, J. W. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences of the United States of America, 111(9), 3268–3273. https://doi.org/10.1073/pnas.1222463110
Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P., … Winter, J. M. (2013). The Agricultural Model Intercomparison and Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and Forest Meteorology, 170, 166–182. https://doi.org/10.1016/j.agrformet.2012.09.011
Rötter, R. P., Carter, T. R., Olesen, J. E., & Porter, J. R. (2011). Crop–climate models need an overhaul. Nature Climate Change, 1(4), 175–177. https://doi.org/10.1038/nclimate1152
Rötter, R. P., Palosuo, T., Kersebaum, K. C., Angulo, C., Bindi, M., Ewert, F., … Trnka, M. (2012). Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 133, 23–36. https://doi.org/10.1016/j.fcr.2012.03.016
Scheffé, H. (1959). The analysis of variance. New York: John Wiley & Sons.
Solazzo, E., & Galmarini, S. (2015). A science-based use of ensembles of opportunities for assessment and scenario studies. Atmospheric Chemistry and Physics, 15(5), 2535–2544. https://doi.org/10.5194/acp-15-2535-2015
Surowiecki, J. (2005). The wisdom of crowds. New York: Anchor Books.
Tebaldi, C., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 365(1857), 2053–2075. https://doi.org/10.1098/rsta.2007.2076
Wallach, D., Mearns, L. O., Ruane, A. C., Rötter, R. P., & Asseng, S. (2016). Lessons from climate modeling on the design and use of ensembles for crop modeling. Climatic Change, 139(3–4), 551–564. https://doi.org/10.1007/s10584-016-1803-1
Wang, B., Lee, J.-Y., Kang, I.-S., Shukla, J., Park, C.-K., Kumar, A., … Yamagata, T. (2009). Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dynamics, 33(1), 93–117. https://doi.org/10.1007/s00382-008-0460-0
Weigel, A. P., Liniger, M. A., & Appenzeller, C. (2008). Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quarterly Journal of the Royal Meteorological Society, 134(630), 241–260. https://doi.org/10.1002/qj.210
Yin, X., Kersebaum, K. C., Kollas, C., Baby, S., Beaudoin, N., Manevski, K., … Olesen, J. E. (2017). Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe. European Journal of Agronomy, 84, 152–165. https://doi.org/10.1016/j.eja.2016.12.009
Yoo, J. H., & Kang, I.-S. (2005). Theoretical examination of a multi-model composite for seasonal prediction. Geophysical Research Letters, 32, L18707. https://doi.org/10.1029/2005GL023513