Life sciences: Multidisciplinary, general & others
Author, co-author :
Bisignano, C.; Department of Biomedical, Dental, Morphological and Functional Images Sciences, University of Messina, Via C. Valeria, Messina, 98125, Italy
Ginestra, G.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
Smeriglio, A.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
La Camera, E.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
Crisafi, G.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
Franchina, Flavio ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Tranchida, P. Q.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
Alibrandi, A.; Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, 98125, Italy
Trombetta, D.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
Mondello, L.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy, Chromaleont c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
Mandalari, G.; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, I-98168, Italy
Language :
English
Title :
Study of the lipid profile of ATCC and clinical strains of staphylococcus aureus in relation to their antibiotic resistance
Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [CrossRef] [PubMed]
Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [CrossRef]
Maki, D.G.; Kluger, D.M.; Crnich, C.J. The risk of bloodstream infection in adults with different intravascular devices: A systematic review of 200 published prospective studies. Mayo Clin. Proc. 2006, 81, 1159–1171. [CrossRef]
Thornton, R.B.; Wiertsema, S.P.; Kirkham, L.A.; Rigby, P.J.; Vijayasekaran, S.; Coates, H.L.; Richmond, P.C. Neutrophil extracellular traps and bacterial biofilms in middle ear effusion of children with recurrent acute otitis media–a potential treatment target. PLoS ONE 2013, 8, e53837. [CrossRef]
Bisignano, C.; Filocamo, A.; Mandalari, G.; Navarra, M. Effect of a white grape (Vitis vinifera L.) juice extract on the growth and biofilm production of methicillin-resistant and sensitive Staphylococcus species. Clinic. Microb. Case Rep. 2015, 1, 016.
Yadav, M.K.; Chae, S.W.; Im, G.J.; Chung, J.W.; Song, J.J. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE 2015, 10, e0119564. [CrossRef] [PubMed]
Shireen, T.; Singh, M.; Dhawan, B.; Mukhopadhyay, K. Characterization of cell membrane parameters of clinical isolates of Staphylococcus aureus with varied susceptibility to alpha-melanocyte stimulating hormone. Peptides 2012, 37, 334–339. [CrossRef] [PubMed]
Denich, T.J.; Beaudette, L.A.; Lee, H.; Trevors, J.T. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 2003, 52, 149–182. [CrossRef]
Sampathkumar, B.; Khachatourians, G.G.; Korber, D.R. Treatment of Salmonella enterica serovar Enteritidis with a sublethal concentration of trisodium phosphate or alkaline pH induces thermotolerance. Appl. Environ. Microbiol. 2004, 70, 4613–4620. [CrossRef]
Yuk, H.G.; Marshall, D.L. Adaptation of Escherichia coli O157: H7 to pH alters membrane lipid composition, verotoxin secretion, and resistance to simulated gastric fluid acid. Appl. Environ. Microbiol. 2004, 70, 3500–3505. [CrossRef] [PubMed]
Yehia, H.M.; Hassanein, W.A.; Ibraheim, S.M. Studies on molecular characterizations of the outer membrane proteins, lipids profile, and exopolysaccharides of antibiotic resistant strain Pseudomonas aeruginosa. Biomed. Res. Int. 2015, 651464.
Schenk, E.R.; Nau, F.; Thompson, C.J.; Tse-Dinh, Y.C.; Fernandez-Lima, F. Changes in lipid distribution in E. coli strains in response to norfloxacin. J. Mass Spectrom. 2015, 50, 88–94. [CrossRef] [PubMed]
Díaz, L.; Hoare, A.; Soto, C.; Bugueño, I.; Silva, N.; Dutzan, N.; Venegas, D.; Salinas, D.; Pérez-Donoso, J.M.; Gamonal, J.; et al. Changes in lipopolysaccharide profile of Porphyromonas gingivalis clinical isolates correlate with changes in colony morphology and polymyxin B resistance. Anaerobe 2015, 33, 25–32. [CrossRef] [PubMed]
Purcaro, G.; Tranchida, P.Q.; Dugo, P.; La Camera, E.; Bisignano, G.; Conte, L.; Mondello, L. Characterization of bacterial lipid profiles by using rapid sample preparation and fast comprehensive two-dimensional gas chromatography in combination with mass spectrometry. J. Sep. Sci. 2010, 33, 2334–2340. [CrossRef] [PubMed]
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0. 1 January 2019. Available online: http://www.eucast.org (accessed on 21 March 2019).
Doulgeraki, A.I.; Di Ciccio, P.; Ianieri, A.; Nychas, G.E. Methicillin-resistant food-related Staphylococcus aureus: A review of current knowledge and biofilm formation for future studies and applications. Res. Microbiol. 2017, 168, 1–15. [CrossRef] [PubMed]
LaPlante, K.L.; Sarkisian, S.A.; Woodmansee, S.; Rowley, D.C.; Seeram, N.P. Effects of cranberry extracts on growth and biofilm production of Escherichia coli and Staphylococcus species. Phytother. Res. 2012, 26, 1371–1374. [CrossRef] [PubMed]
Filocamo, A.; Bisignano, C.; Mandalari, G.; Navarra, M. In Vitro Antimicrobial Activity and Effect on Biofilm Production of a White Grape Juice (Vitis vinifera) Extract. Evid. Based Complement. Alternat. Med. 2015, 856243.
Lopalco, P.; Stahl, J.; Annese, C.; Averhoff, B.; Corcelli, A. Identification of unique cardiolipin and monolysocardiolipin species in Acinetobacter baumannii. Sci. Rep. 2017, 7, 2972. [CrossRef]
Lobasso, S.; Lopalco, P.; Angelini, R.; Vitale, R.; Huber, H.; Müller, V.; Corcelli, A. Coupled TLC and MALDI-TOF/MS analyses of the lipid extract of the hyperthermophilic archaeon Pyrococcus furiosus. Archaea 2012, 957852.
Heipieper, H.J.; Meinhardt, F.; Segura, A. The cis-trans isomerase of unsaturated fatty acids in Pseudomonas and Vibrio: Biochemistry, molecular biology and physiological function of a unique stress adaptive mechanism. FEMS Microbiol. Lett. 2003, 229, 1–7. [CrossRef]
Russell, N.J.; Fukunaga, N. A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol. Rev. 1990, 75, 171–182. [CrossRef]
Russell, A.D. Potential sites of damage in micro-organisms exposed to chemical or physical agents. Soc. Appl. Bacteriol. Symp. Ser. 1984, 12, 1–18.
Suutari, M.; Laakso, S. Microbial fatty acids and thermal adaptation. Crit. Rev. Microbiol. 1994, 20, 285–328. [CrossRef]
Fozo, E.M.; Quivey, R.G., Jr. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl. Environ. Microbiol. 2004, 70, 929–936. [CrossRef] [PubMed]
Di Pasqua, R.; Hoskins, N.; Betts, G.; Mauriello, G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J. Agric. Food Chem. 2006, 54, 2745–2749. [CrossRef] [PubMed]
McElhaney, R.N. The effect of membrane lipids on permeability and transport in prokaryotes. In Structure and Properties of Cell Membranes; Benga, G., Ed.; CRC Press, Inc.: Boca Raton, FL, USA, 1985; Volume 2, pp. 20–51.
Uratani, Y.; Wakayama, N.; Hoshino, T. Effect of lipid acyl chain length on activity of sodium-dependent leucine transport system in Pseudomonas aeruginosa. J. Biol. Chem. 1987, 262, 16914–16919. [PubMed]
Clinical and Laboratory Standards Institute (CLSI). Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2012.
Martin, M.A.; Pfaller, M.A.; Massanari, R.M.; Wenzel, R.P. Use of cellular hydrophobicity, slime production, and species identification markers for the clinical significance of coagulase-negative staphylococcal isolates. Am. J. Infect. Control. 1989, 17, 130–135. [CrossRef]