[en] The quantum theory of the cold-atom micromaser including the effects of gravity is considered. We show that gravity does not break the special properties of the induced emission probability for the micromaser in the cold atom regime and rather new effects are predicted. In particular, we show that the cavity acts in the gravity field as an additional repulsive and attractive potential, resulting in quasibound states of the atomic motion. This feature gives rise to fine resonances in the induced emission probability that are not restricted to any particular cavity mode function, in contrast to the usual cold-atom micromaser. It is also shown that the atom is able to emit a photon inside the cavity, though classically it does not reach the interaction region. Predictions about the photon number statistics when the cavity is pumped by a flux of excited atoms are finally given. Unusual highly nonclassical "dragon" distributions are still predicted in the vertical geometry. (c) 2005 American Institute of Physics.
Disciplines :
Physics
Author, co-author :
Bastin, Thierry ; Université de Liège - ULiège > Département de physique > Physique des atomes froids
Martin, John ; Université de Liège - ULiège > Département de physique > Physique des atomes froids
Language :
English
Title :
Quantum theory of the cold-atom micromaser including gravity
Publication date :
2005
Journal title :
Physical Review. A, Atomic, molecular, and optical physics
ISSN :
1050-2947
eISSN :
1094-1622
Publisher :
American Physical Society, College Park, United States - Maryland
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. O. Scully, G. M. Meyer, and H. Walther, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.76.4144 76, 4144 (1996).
G. M. Meyer, M. O. Scully, and H. Walther, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.56.4142 56, 4142 (1997).
M. LÃffler, G. M. Meyer, M. SchrÃder, M. O. Scully, and H. Walther, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.56.4153 56, 4153 (1997).
O. Benson, M. Weidinger, M. LÃffler, and H. Walther, Fortschr. Phys. FPYKA6 0015-8208 10.1002/1521-3978(199811)46:6/8<809::AID-PROP809>3. 0.CO;2-U 46, 809 (1998).
T. Bastin and J. Martin, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.67.053804 67, 053804 (2003).
T. E. I. Bloch and T. W. Hänsch, Nature (London) NATUAS 0028-0836 10.1038/35003132 403, 166 (2000).
V. V. Nesvizhevsky, H. G. BÃrner, A. K. Petoukhov, H. Abele, S. Baeler, F. J. Rue, T. StÃferle, A. Westphal, A. M. Gagarski, G. A. Petrov, Nature (London) NATUAS 0028-0836 10.1038/415297a 415, 297 (2002).
V. V. Nesvizhevsky, H. G. BÃrner, A. M. Gagarski, A. K. Petoukhov, G. A. Petrov, H. Abele, S. Baeler, G. Divkovic, F. J. Rue, T. StÃferle, Phys. Rev. D PRVDAQ 0556-2821 10.1103/PhysRevD.67.102002 67, 102002 (2003).
H. Mabuchi, Q. A. Turchette, M. S. Chapman, and J. Kimble, Opt. Lett. OPLEDP 0146-9592 21, 1393 (1996).
C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.80.4157 80, 4157 (1998).
P. MÃnstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, and G. Rempe, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.82.3791 82, 3791 (1999).
P. MÃnstermann, T. Fischer, P. Pinkse, and G. Rempe, Opt. Commun. OPCOB8 0030-4018 10.1016/S0030-4018(98)00596-3 159, 63 (1999).
J. Ye, D. W. Vernooy, and H. J. Kimble, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.83.4987 83, 4987 (1999).
M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.85.4872 85, 4872 (2000).
Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.89.233001 89, 233001 (2002).
P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, Nature (London) NATUAS 0028-0836 10.1038/nature02387 428, 50 (2004).
K.-P. Marzlin and J. Audretsch, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.53.1004 53, 1004 (1996).
Xu-Bo Zou and Jing-Bo Xu, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.61.063409 61, 063409 (2000).
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover Publications, New York, 1970).
L. D. Landau and E. M. Lifshitz, Quantum Mechanics-Non-Relativistic Theory, 2nd ed. (Pergamon, London, 1965).
D. Ahn and S. L. Chuang, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.34.9034 34, R9034 (1986).
T. Bastin and E. Solano, Comput. Phys. Commun. CPHCBZ 0010-4655 10.1016/S0010-4655(99)00452-X 124, 197 (2000).
C. T. Lee, J. Opt. Soc. Am. B JOBPDE 0740-3224 14, 1576 (1997).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.