Geographic Information System (GIS); Water resource management; Groundwater; Geomatics; Free and Open Source; FREEWAT; Walloon Region
Abstract :
[en] AkvaGIS is a novel, free and open source module included in the FREEWAT plugin for QGIS that supplies a standardized and easy-to-use workflow for the storage, management, visualization and analysis of hydrochemical and hydrogeological data. The main application is devised to simplify the characterization of groundwater bodies for the purpose of building rigorous and data-based environmental conceptual models (as required in Europe by the Water Framework Directive). For data-based groundwater management, AkvaGIS can be used to prepare input files for most groundwater flow numerical models in all of the available formats in QGIS. AkvaGIS is applied in the Walloon Region (Belgium) to demonstrate its functionalities. The results support a better understanding of the hydrochemical relationship among aquifers in the region and can be used as a baseline for the development of new analyses, e.g., further delineation of nitrate vulnerable zones and management of the monitoring network to control chemical spatial and temporal evolution. AkvaGIS can be expanded and adapted for further environmental applications as the FREEWAT community grows.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Alcaraz, M., GIS Platform for Management of Shallow Geothermal Resources. PhD Thesis, 2016, Polytechnic University of Catalunya, UPC (Spain).
Alcaraz, M., Vázquez-Suñé, E., Velasco, V., Criollo, R., A loosely coupled GIS and hydrogeological modeling framework. Environ. Earth Sci., 76, 2017, 382, 10.1007/s12665-017-6709-3.
Ashraf, S., Afshari, H., Ebadi, A.G., Geographical information system techniques for evaluation of groundwater quality. Am. J. Agric. Biol. Sci. 2 (2011), 261–266.
Bhatt, G., Kumar, M., Duffy, C.J., Bridging the gap between geohydrologic data and distributed hydrologic modeling. International Congress on Environmental Modelling and Software, Barcelona, Catalonia, Spain. July 2008, 2008.
Bhatt, G., Kumar, M., Duffy, C.J., A tightly coupled GIS and distributed hydrologic modeling framework. Environ. Model. Software 62 (2014), 70–84, 10.1016/j.envsoft.2014.08.003.
Brahy, V., Les indicateurs clés de l'environnement wallon 2014. Namur. 2014, Service public de Wallonie, Belgique.
Boisvert, E., Brodaric, B., Julien, H., Smirnoff, A., Létourneau, F., The GIN Mediator: a Software Tool for Enabling Interoperability in Groundwater Data Networks. 2007, 2–5.
Boisvert, E., Brodaric, B., GroundWater Markup Language (GWML) – enabling groundwater data interoperability in spatial data infrastructures. J. Hydroinf., 14, 2012, 93, 10.2166/hydro.2011.172.
BSD license (Berkeley Software Distribution). https://opensource.org/licenses/BSD-2-Clause (Accessed November 2017).
Cabalska, Jolanta, Felter, Agnieszka, Hordejuk, Mateusz, Mikoajczyk, A., The Polish Hydrogeological Survey Database Integrator - a new GIS tool for the hydrogeological database management useful in mapping process. Przeglad Geol. 53 (2005), 917–920.
Carrera, J., Vázquez‐Suñé, E., Castillo, O., Sánchez‐Vila, X., A methodology to compute mixing ratios with uncertain end‐members. Water Resour. Res., 40, 2004, 10.1029/2003WR002263.
Carrera-Hernández, J.J., Gaskin, S.J., The Basin of Mexico Hydrogeological Database (BMHDB): implementation, queries and interaction with open source software. Environ. Model. Softw. 23 (2008), 1271–1279, 10.1016/j.envsoft.2008.02.012.
Chen, D., Shams, S., Carmona-Moreno, C., Leone, A., Assessment of open source GIS software for water resources management in developing countries. J. Hydro-environment Res. 4 (2010), 253–264, 10.1016/J.JHER.2010.04.017.
Chenini, I., Ben Mammou, A., Groundwater recharge study in arid region: an approach using GIS techniques and numerical modeling. Comput. Geosci. 36:6 (2010), 801–817, 10.1016/j.cageo.2009.06.014.
Chesnaux, R., Lambert, M., Walter, J., Fillastre, U., Hay, M., Rouleau, A., Germaneau, D., Building a geodatabase for mapping hydrogeological features and 3D modeling of groundwater systems: application to the Saguenay–Lac-St.-Jean region, Canada. Comput. Geosci. 37:11 (2011), 1870–1882, 10.1016/j.cageo.2011.04.013.
Criollo, R., Vázquez-Suñé, E., Riera, C., Kukuric, N., Borsi, I., Foglia, L., Cannata, M., De Filippis, G., Rossetto, R., Water Management Capacity Building through the FREEWAT Platform. EGU 2018. Geophysical Research Abstracts, vol 20, 2018 EGU2018-18956. EGU General Assembly 2018.
Criollo, R., Riera, C., Scheiber, L., Velasco, V., Vázquez-Suñé, E., Rossetto, R., Pujades, E., Jurado, A., Bouyère, S., AkvaGIS application in the Walloon region (Belgium). OSFHome, 2018, 10.17605/OSF.IO/7URC9.
Criollo, R., Velasco, V., Vázquez-Suñé, E., Nardi, A., Marazuela, M.A., Rossetto, R., Borsi, I., Foglia, L., Cannata, M., De Filippis, G., Open Source GIS Based Tools to Improve Hydrochemical Water Resources Management in EU H2020 FREEWAT Platform. EGU 2017 Geophysical Research Abstracts, vol 19, 2017 EGU2017-19584. EGU General Assembly 2017.
Criollo, R., Velasco, V., Vázquez-Suné, E., Serrano-Juan, A., Alcaraz, M., García-Gil, A., An integrated GIS-based tool for aquifer test analysis. Environ. Earth Sci., 2016, 10.1007/s12665-016-5292-3.
De Dreuzy, J.-R., Bodin, J., Le Grand, H., Davy, P., Boulanger, D., Battais, A., Bour, O., et al. General database for ground water site information. Ground water 44:5 (2006), 743–748, 10.1111/j.1745-6584.2006.00220.x.
De Filippis, G., Borsi, I., Foglia, L., Cannata, M., Velasco Mansilla, V., Vázquez-Suñé, E., Ghetta, M., Rossetto, R., Software tools for sustainable water resources management: the GIS-integrated FREEWAT platform. Rendiconti Online della Società Geologica Italiana 42 (2017), 59–61, 10.3301/ROL.2017.14.
De Filippis, G., Borsi, I., Foglia, L., Cannata, M., Criollo, R., Vázquez-Suñé, E., Kopač, I., Panteleit, B., Positano, P., Nannucci, M.S., Sapiano, M., Svidzinska, D., Grodzynskyi, M., Rossetto, R., Joining Participatory Approach and Spatially-based Modelling Tools for Groundwater Resource Management. EGU 2018. Geophysical Research Abstracts, vol. 20, 2018 EGU2018-8396. EGU General Assembly 2018.
Dile, Y.T., Daggupati, P., George, C., Srinivasan, R., Arnold, J., Introducing a new open source GIS user interface for the SWAT model. Environ. Model. Software 85 (2016), 129–138.
Duarte, L.B.C.B., Gonçalves, J.A.A.P., Teodoro, A.C., (eds.) Open Source GIS Tools: Two Environmental Applications. (Chapter 4). Frontiers in Information Systems. GIS – an Overview of Applications, vol. 1, 2018, Bentham Science Publishers 978-1-68108-612-5.
ESRI, ArcGIS 8 and 9.0 Software Package Documentation. 2004, ESRI, Redlands, California, United States of America.
ESRI, ArcGIS 10. 2012, Environmental Systems Research Institute, Redlands, United States of America Available at: http://desktop.arcgis.com/en/ August 2018.
European Commission, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for community action in the field of water policy. Off. J. L, 2000, 327 22/12/2000, Brussels, Belgium.
European Commission, Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. September 2018 https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31998L0083, 1998.
Foglia, L., Borsi, I., Mehl, S., De Filippis, G., Cannata, M., Vázquez-Suñé, E., Criollo, R., Rossetto, R., FREEWAT, a free and open source, GIS-integrated, hydrological modeling platform. Groundwater, 2018, 10.1111/gwat.12654.
Foglia, L., Borsi, I., Cannata, M., De Filippis, G., Criollo, R., Mehl, S., Rossetto, R., How Innovative ICT Tools Can Enhance Understanding of Interactions between Societal, Hydrological and Environmental Changes. 2017, AGU 2017 Fall Meeting, New Orleans, USA.
Ghosh, A., Tiwari, A.K., Das, S., A GIS based DRASTIC model for assessing groundwater vulnerability of Katri Watershed, Dhanbad, India. Model. Earth Syst. Environ. 1:3 (2015), 1–14, 10.1007/s40808-015-0009-2.
Gleeson, T., Alley, W.M., Allen, D.M., Sophocleous, M.A., Zhou, Y., Taniguchi, M., VanderSteen, J., Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50 (2012), 19–26, 10.1111/j.1745-6584.2011.00825.x.
GNU Lesser General Public License v2.0. https://www.gnu.org/licenses/old-licenses/lgpl-2.0.html (Accessed August 2018).
Gogu, R.C., Carabin, G., Hallet, V., Peters, V., Dassargues, A., GIS based hydrogeological databases and groundwater modelling. Hydrogeol. J. 9:6 (2001), 555–569.
Harbaugh, A.W., MODFLOW-2005, the U.S. Geological Survey Modular Groundwater Model - the Ground-water Flow Process. 2005, U.S. Geological Survey, Techniques and Methods 6 -A16.
Huang, B., Cova, T., Tsou, M.-H., Bareth, G., Song, C., Song, Y., Cao, K., Silva, E., Comprehensive Geographic Information Systems. 2018, Elsevier, 9780128046609.
IGME, The chemical composition of natural groundwater (“La composición química de las aguas subterráneas naturales”). http://aguas.igme.es/igme/publica/libro43/pdf/lib43/1_1.pdf, 2002.
INSPIRE, Infrastructure for Spatial Information in Europe. D.2.8.11.4. Data Specification on Geology-draft. 2013, Technical Guidelines.
INSPIRE, Infrastructure for Spatial Information in Europe. D2.9_V1.0. Guidelines for the Use of Observations&Measurements and Sensor Web Enablements-related Standards in INSPIRE. AnnexII and III Data Specification Development. 2011, Technical Guidelines.
Jarar Oulidi, H., Löwner, R., Benaabidate, L., Wächter, J., HydrIS: an open source GIS decision support system for groundwater management (Morocco). Geo Spatial Inf. Sci. 12 (2009), 212–216, 10.1007/s11806-009-0048-9.
Jarar Oulidi, H., Moumen, A., Towards a spatial data infrastructure and an integrated management of groundwater resources. J. Geogr. Inf. Syst. 07 (2015), 667–676, 10.4236/jgis.2015.76054.
Jurado, A., Vázquez-Suñé, E., Pujades, E., Potential uses of pumped urban groundwater: a case study in Sant Adrià del Besòs (Spain). Hydrogeol. J. 25:6 (2017), 1745–1758.
Jurado, A., Borges, A., Pujades, E., Hakoun, V., Otten, J., Knöller, K., Brouyère, S., Occurrence of greenhouse gases (CO 2 , N 2 O and CH 4 ) in the groundwater of the Walloon Region (Belgium). Sci. Total Environ. 619–620 (2018), 1579–1588, 10.1016/j.scitotenv.2017.10.144.
Khosrow, M., Clarke, S., Jennex, M.E., Becker, A., Anttiroiko, A., Geographic Information Systems: concepts, Methodologies, Tools, and Applications. 2012, IGI Global ISBN: 978-1-4666-2038-4.
Kim, S.-M., Choi, Y., Suh, J., Oh, S., Park, H.-D., Yoon, S.-H., Go, W.-R., ArcMine: a GIS extension to support mine reclamation planning. Comput. Geosci. 46 (2012), 84–95, 10.1016/J.CAGEO.2012.04.007.
Kingdon, A., Nayembil, M.L., Richardson, A.E., Smith, A., A geodata warehouse: using denormalisation techniques as a tool for delivering spatially enabled integrated geological information to geologists. Comput. Geosci., 96, 2016, 10.1016/j.cageo.2016.07.016.
Kresic, N., Mikszewski, A., Hydrogeological Conceptual Site Models: Data Analysis and Visualization. 2012 13: 978-1439852224.
Lee, C., Kim, K., Lee, H., GIS based optimal impervious surface map generation using various spatial data for urban nonpoint source management. J. Environ. Manag. 206 (2018), 587–601, 10.1016/J.JENVMAN.2017.10.076.
Létourneau, F., Boisvert, É., Brodaric, B., Groundwater Markup Language : a GML Application for the Exchange of Groundwater Data. 2011, Geohydro 2011.ca. LHA, 2013.
Li, Z., Quanc, J., Lia, X.Y., Wua, X.C., Wua, H.W., Lia, Y.T., Lia, G.Y., Establishing a model of conjunctive regulation of surface water and groundwater in the arid regions. Agric. Water Manag. 174 (2016), 30–38.
Maidment, D.R., Arc Hydro: GIS for Water Resources, vol. 1, 2002, ESRI, Inc.
Marchant, A.P., Banks, V.J., Royse, K.R., Quigley, S.P., The development of a GIS methodology to assess the potential for water resource contamination due to new development in the 2012 Olympic Park site, London. Comput. Geosci. 51 (2013), 206–215, 10.1016/J.CAGEO.2012.09.006.
Matplotlib 1.5. http://matplotlib.org/(Accessed September 2018).
Merwade, V., Cook, A., Coonrod, J., GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping. Environ. Model. Software 23:10–11 (2008), 1300–1311, 10.1016/j.envsoft.2008.03.005.
MIT License (Massachusetts Institute of Technology). https://opensource.org/licenses/MIT (Accessed August 2018).
Nas, B., Berktay, A., Groundwater quality mapping in urban groundwater using GIS. Environ. Monit. Assess. 160 (2010), 215–227, 10.1007/s10661-008-0689-4.
Nielsen, A., Bolding, K., Hu, F., Trolle, D., An open source QGIS-based workflow for model application and experimentation with aquatic ecosystems. Environ. Model. Softw. 95 (2017), 358–364, 10.1016/J.ENVSOFT.2017.06.032.
Odfpy 1.3. https://pypi.python.org/pypi/odfpy (Accessed September 2018).
OGC (2003). Observations and Measurements, 03-022r3. http://portal.opengeospatial.org (Accessed August 2018).
OGC (2006). Observations and Measurements, 05-087r4. http://portal.opengeospatial.org (Accessed August 2018).
OGC (2007). Observations and Measurements, Part 1, Observation Schema, 07-022r1. http://www.opengeospatial.org/standards/om (Accessed August 2018).
OGC (2012). OGC Water ML 2.0:Part 1-Timeseries.10-126r3 (Accessed August 2018).
ONEGeology (2013). ONEGeology Project. http://www.onegeology.org (Accessed August 2018).
Openpyxl2.3. https://openpyxl.readthedocs.io (Accessed September 2017).
Pyexcel 0.2. https://pyexcel.readthedocs.io (Accessed September 2017).
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2009 August 2018 http://qgis.osgeo.org.
Refsgaard, J.C., Højberg, A.L., Møller, I., Hansen, M., Søndergaard, V., Groundwater modeling in integrated water resources management - visions for 2020. Ground Water 48 (2010), 633–648, 10.1111/j.1745-6584.2009.00634.x.
Rios, J.F., Ye, M., Wang, L., Lee, P.Z., Davis, H., Hicks, R., ArcNLET: a GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies. Comput. Geosci. 52 (2013), 1080–1116, 10.1016/j.cageo.2012.10.003.
Romanelli, A., Lima, M.L., Quiroz Londoño, O.M., Martínez, D.E., Massone, H.E., A gis-based assessment of groundwater suitability for irrigation purposes in flat areas of the wet pampa plain, Argentina. Environ. Manag. 50 (2012), 490–503, 10.1007/s00267-012-9891-9.
Rossetto, R., Borsi, I., Schifani, C., Bonari, E., Mogorovich, P., Primicerio, M., SID&GRID: integrating hydrological modeling in GIS environment. Rendiconti Online Società Geologica Italiana 24 (2013), 282–283.
Rossetto, R., Borsi, I., Foglia, L., FREEWAT: FREE and open source software tools for WATer resource management. Rendiconti Online Società Geologica Italiana 35 (2015), 252–255, 10.3301/ROL.2015.113.
Rossetto, R., De Filippis, G., Borsi, I., Foglia, L., Cannata, M., Criollo, R., Vázquez-Suñé, E., Integrating free and open source tools and distributed modelling codes in GIS environment for data-based groundwater management. Environ. Model. Software, 107, 2018, 10.1016/j.envsoft.2018.06.007.
Serrano-Juan, A., Vázquez-Suñé, E., Easy_QUIM. Chemical Balances in Water Analysis and its Graphic Representation. 2014 Hydrogeology Group (CSIC-UPC). Spanish Council for Scientici Research (CSIC) register number: CG3420743.
Serrano-Juan, A., Criollo, R., Velasco, V., Riera, C., Vázquez-Suñé, E., FREEWAT User Manual - Volume 4. AkvaGIS (Hydrochemical Analysis Tools and Hydrogeological Analysis Tools). 2017 Version 1.0.
Sen, M., Duffy, T., GeoSciML: development of a generic GeoScience markup language. Comput. Geosci., 2005, 10.1016/j.cageo.2004.12.003.
Spatialite Development Team. https://www.gaia-gis.it/fossil/libspatialite/home, 2011 (Accessed August 2018).
SPW-DGO3, Etat des nappes d'eau souterraine de Wallonie. 2016 Edition: Service public de Wallonie, DGO 3 (DGARNE), Belgique. Dépôt légal D/2017/11802/09.
Steyaert, L.T., Goodchild, M.F., Integrating geographic information systems and environmental simulation models. Michener, W.K., Brunt, J.W., Stafford, S.G., (eds.) Environmental Information Management and Analysis: Ecosystem to Global Scales, 1994, Taylor and Francis, London, 333–357 ISBN: 0 7484 0123 7.
Strassberg, G., A Geographic Data Model for Groundwater Systems. 2005, Doctoral thesis, University of Texas, Austin, 229.
Teodoro, A.C., Frontiers in Information Systems. GIS – an Overview of Applications, vol. 1, 2018, Bentham Science Publishers ISBN: 978-1-68108-612-5.
Tiwari, A.K., Singh, A.K., Singh, A.K., Singh, M.P., Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India. Appl. Water Sci. 7 (2017), 1609–1623, 10.1007/s13201-015-0313-z.
Vázquez-Suñé, E., Abarca, E., Carrera, J., Capino, B., Gámez, D., Pool, M., Simó, T., Batlle, F., Niñerola, J.M., Ibáñez, X., Groundwater modelling as a tool for the European water framework directive (WFD) application: the llobregat case. Phys. Chem. Earth, Parts A/B/C 31 (2006), 1015–1029, 10.1016/j.pce.2006.07.008.
Vázquez-Suñé, E., Marazuela, M.A., Velasco, V., Diviu, M., Pérez-Estaún, A., Álvarez-Marrón, J., A geological model for the management of subsurface data in the urban environment of Barcelona and surrounding area. Solid Earth 7 (2016), 1317–1329, 10.5194/se-7-1317-2016.
Velasco, V., GIS-based Hydrogeological Platform for Sedimentary Media. PhD Thesis, 2013, Polytechnic University of Catalunya, UPC (Spain).
Velasco, V., Tubau, I., Vázquez-Suñé, E., Gogu, R., Gaitanaru, D., Alcaraz, M., Serrano-Juan, A., Fernàndez-Garcia, D., Garrido, T., Fraile, J., Sanchez-Vila, X., GIS-based hydrogeochemical analysis tools (QUIMET). Comput. Geosci. 70 (2014), 164–180, 10.1016/j.cageo.2014.04.013.
Wang, L., Jackson, C.R., Pachocka, M., Kingdon, A., A seamlessly coupled GIS and distributed groundwater flow model. Environ. Model. Software, 82, 2016, 10.1016/j.envsoft.2016.04.007.
Wojda, P., Godu, R., Brouyère, S., Conceptual model of hydrogeological information for a GIS-based Decision Support System in management of artificial recharge in semi-arid regions. Int. Assoc. Math. Geol. (IAMG), 2006, S05–S13 (XI th International Congress Université de Liège, Belgium).
Wojda, P., Brouyère, S., An object-oriented hydrogeological data model for groundwater projects. Environ. Model. Software 43 (2013), 109–123, 10.1016/j.envsoft.2013.01.015.
Ye, H., Brown, M., Harding, J., GIS for all: exploring the barriers and opportunities for underexploited GIS applications. OSGeo J. 13 (2013), 19–28 Open Source Geospatial Foundation https://journal.osgeo.org/index.php/journal/article/view/209/181.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.