[en] Type-II superconducting hollow cylinders can act as efficient passive magnetic shields. Unlike in ferromagnetic materials, the magnetic shielding mechanism in a superconductor occurs through persistent currents flowing on the macroscopic scale. When a superconducting tube is used to shield a sequence of magnetic fields with different orientations, magnetic shielding performance levels are likely to be degraded because of the superconducting currents that are trapped in the superconductor. In this chapter we study experimentally the magnetic shielding configurations where an external magnetic field is applied first along one direction and a second field is subsequently applied along another (perpendicular) direction. In particular, we focus on the effect of an axial trapped field on the transverse shielding performance and on the effect of a transverse trapped field on the axial or the transverse shielding performance. Finally, we show how the pristine state of the tube can be restored by an appropriate magnetic field sequence, i.e., without heating up the shield above its critical temperature Tc.
Research Center/Unit :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Wéra, Laurent; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Fagnard, Jean-François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Hogan, Kevin; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Vanderheyden, Benoît ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Electronique et microsystèmes
Vanderbemden, Philippe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Capteurs et systèmes de mesures électriques
Language :
English
Title :
The influence of an initial trapped field on the magnetic shielding performance of bulk high-temperature superconducting tubes
Publication date :
2018
Main work title :
High-Temperature Superconductors: Occurrence, Synthesis and Applications
Kawabe U, Doi T, and Mitsuhiro Kudo, 1969, Magnetic shielding by superconducting Nb- 40Zr- 10Ti hollow cylinders, Journal of Applied Physics, 40 10.
Claycomb J, 1999, Magnetic shields, In: Applied Superconductivity: Handbook on Devices and Applications, Volume 1, Seidel P, Ed. Wiley, pp. 780-806.
Kamiya K, Warner BA and DiPirro MJ, 2001, Magnetic shielding for sensitive detectors Cryogenics 41 401.
Arpaia P, Ballarino A, Giunchi G and Montenero G, 2014, MgB2 cylindrical superconducting shielding for cryogenic measurement applications: a case study on DC current transformers, Journal of Instrumentation 9 P04020-P.
Giunchi G, Bassani E, Cavallin T, Bancone N and Pavese F, 2007, An MgB2 superconducting shield for a cryogenic current comparator working up to 34 K, Superconductor Science and Technology 20 L39-L41.
Trociewitz UP, Dalban-Canassy M, Hannion M, Hilton DK, Jaroszynski J, Noyes P, et al. 2011, 35.4 T field generated using a layer-wound superconducting coil made of (RE)Ba 2 Cu 3 O 7 -x (RE = rare earth) coated conductor, Applied Phyics Letters 99 202-506.
Takahata K, Nishijima S, Ohgami M, Okada T, Nakagawa S and Yoshiwa M, 1989, Magnetic shielding by a tubular superconducting winding in parallel and transverse fields, IEEE Trans. Magn. 25 1889.
Matsuba H, Yahara A and Irisawa D, 1992, Magnetic shielding properties of HTc superconductor, Superconductor Science and Technology 5 S432.
Fagnard JF, Elschner S, Bock J, Dirickx M, Vanderheyden B, and Vanderbemden P, 2010, Shielding efficiency and E(J) characteristics measured on large melt cast Bi-2212 hollow cylinders in axial magnetic fields, Superconductor Science and Technology 23 095012.
Denis S, Dusoulier L, Dirickx M, Vanderbemden P, Cloots R, Ausloos M and Vanderheyden B, 2007, Magnetic shielding properties of high-temperature superconducting tubes subjected to axial fields, Superconductor Science and Technology 20 192.
Fagnard JF, Denis S, Lousberg G, Dirickx M, Ausloos M, Vanderheyden B and Vanderbemden P, 2009, DC and AC Shielding Properties of Bulk High-Tc Superconducting Tubes, IEEE Trans. Appl. Supercond. 19 2905.
Tomkow L, Ciszek M, and Chorowski M, 2015 Combined magnetic screen made of Bi-2223 bulk cylinder and YBCO tape rings——Modeling and experiments, Journal of Applied Physics 117 043901.
Sasaki T, Tanaka M, Morita M, Miyamoto K and Hashimoto M, 1992, Magnetic Shielding by Superconducting Y-Ba-Cu-O Prepared by the Modified Quench and Melt Growth (QMG) Process, Jpn. J. Appl. Phys. 31 1026.
Pavese F, Bergadano E, Bianco M, Ferri D, Giraudi Dand Vanolo M, 1997, Progress in Fabrication of Large Magnetic Shields by Using Extended YBCO Thick Films Sprayed on Stainless Steel with the HVOF Technique In: Advances in Cryogenic Engineering Materials, Summers L T, Ed., ed Boston, MA: Springer US, pp. 917-922.
Kvitkovic J, Davis D, Zhang M, and Pamidi S, 2015, Magnetic Shielding Characteristics of Second Generation High Temperature Superconductors at Variable Temperatures Obtained by Cryogenic Helium Gas Circulation, IEEE Trans. Appl. Supercond. 25 8800304.
Gozzelino L, Minetti B, Gerbaldo R, Ghigo G, Laviano F, Agostino A and Mezzetti E, 2011, Local Magnetic Investigations of MgB2 Bulk Samples for Magnetic Shielding Applications, IEEE Trans. Appl. Supercond. 21 3146.
Cavallin T, Quarantiello R, Matrone A and Giunchi G, 2006, Magnetic shielding of MgB2 tubes in applied DC and AC field, Journal of Physics: Conference Series 43 1015.
Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Agostino A, Bonometti E, Chiampi M, Manzin A and Zilberti L, 2013, DC Shielding Properties of Coaxial MgB2/Fe Cups, IEEE Trans. Appl. Supercond. 23 8201305.
Gozzelino L, Gerbaldo R, Ghigo G, Laviano F, Truccato M and Agostino A, 2016, Superconducting and hybrid systems for magnetic field shielding, Supercond. Sci. Technol. 29 034004.
Rabbers JJ, Oomen MP, Bassani E, Ripamonti G and Giunchi G, 2010, Magnetic shielding capability of MgB2 cylinders, Supercond. Sci. Technol. 23 125003.
Wera L, Fagnard JF, Namburi DK, Shi Y, Vanderheyden B and Vanderbemden P, 2017, Magnetic Shielding Above 1 T at 20 K With Bulk, Large Grain YBCO Tubes Made by Buffer-Aided Top Seeded Melt Growth, IEEE Trans. Appl. Supercond. 27 6800305.
Yang PT, Yang WM and Chen JL, 2017, Fabrication and properties of single domain GdBCO superconducting rings by a buffer aided Gd+011 TSIG method, Superconductor Science and Technology 30 085003.
Denis S, Dirickx M, Vanderbemden P, Ausloos M and Vanderheyden B, 2007, Field penetration into hard type-II superconducting tubes: effects of a cap, a nonsuperconducting j oint, and non-uniform superconducting properties, Superconductor Science and Technology 20 418.
Fagnard JF, Dirickx M, Ausloos M, Lousberg G, Vanderheyden B and Vanderbemden P, 2009, Magnetic shielding properties of high-Tc superconducting hollow cylinders: model combining experimental data for axial and transverse magnetic field configurations, Superconductor Science and Technology 22 105002.
Hogan K, Fagnard JF, Wéra L, Vanderheyden B and Vanderbemden P, 2015 Magnetic shielding of an inhomogeneous magnetic field source by a bulk superconducting tube Superconductor Science and Technology 28 035011.
Funaki K and Yamafuji K, 1982, Abnormal Transverse-Field Effects in Nonideal Type II Superconductors I. A Linear Array of Monofilamentary Wires, Jpn. J. Appl. Phys. 21 299.
Badía-Majós A and López C, 2007 Critical-state analysis of orthogonal flux interactions in pinned superconductors, Physical Review B 76 054504.
Vanderbemden P, Hong Z, Coombs TA, Denis S, Ausloos M, Schwartz J, et al. 2007, Behavior of bulk high-temperature superconductors of finite thickness subjected to crossed magnetic fields: Experiment and model, Physical Review B 75 174515.
Hong Z, Vanderbemden P, Pei R, Jiang Y, Campbell AM and Coombs TA, 2008, The numerical modeling and measurement of demagnetization effect in bulk YBCO superconductors subjected to transverse field, IEEE Trans. Appl. Supercond. 18 1561.
Luzuriaga J, et al. 2009, Magnetic relaxation induced by transverse flux shaking in MgB2 superconductors, Superconductor Science and Technology 22 015021.
Baghdadi M, Ruiz HS and Coombs TA, 2014, Crossed-magnetic-field experiments on stacked second generation superconducting tapes: reduction of the demagnetization effects, AppliedPhyics Letters 104 232602.
Celebi S, Sirois F and Lacroix C, 2015 Collapse of the magnetization by the application of crossed magnetic fields: observations in a commercial Bi:2223/Ag tape and comparison with numerical computations, Superconductor Science and Technology 28 025012.
Fisher LM, et al. 1997, Collapse of the magnetic moment in a hard superconductor under the action of a transverse ac magnetic field, Physica C 278 169.
Campbell AM, Baghdadi M, Patel A, Zhou D, Huang KY, Shi Y and Coombs T, 2017, Demagnetisation by crossed fields in superconductors, Superconductor Science and Technology 30 034005.
Clem JR, 1982, Flux-line-cutting losses in type-II superconductors, Physical Review B 26 2463.
Clem JR, Weigand M, Durrell JH and Campbell AM, 2011, Theory and experiment testing flux-line cutting physics, Superconductor Science and Technology 24 062002.
Campbell AM, 2011, Flux cutting in superconductors, Superconductor Science and Technology 24 091001.
Romero-Salazar C, 2016, Bianisotropic-critical-state model to study flux cutting in type-II superconductors at parallel geometry, Superconductor Science and Technology 29 045004.
Brandt EH and Mikitik GP, 2007, Unusual critical states in type-II superconductors, Physical Review B 76 064526.
Fagnard JF, Morita M, Nariki S, Teshima H, Caps H, Vanderheyden B, et al. 2016, Magnetic moment and local magnetic induction of superconducting/ferromagnetic structures subjected to crossed fields: experiments on GdBCO and modelling, Superconductor Science and Technology 29 125004.