Abstract :
[en] Semantic segmentation can be regarded as a useful tool for global scene understanding in many areas, including sports, but has inherent difficulties, such as the need for pixel-wise annotated training data and the absence of well-performing real-time universal algorithms. To alleviate these issues, we sacrifice universality by developing a general method, named ARTHuS, that produces adaptive real-time match-specific networks for human segmentation in sports videos, without requiring any manual annotation. This is done by an online knowledge distillation process, in which a fast student network is trained to mimic the output of an existing slow but effective universal teacher network, while being periodically updated to adjust to the latest play conditions. As a result, ARTHuS allows to build highly effective real-time human segmentation networks that evolve through the match and that sometimes outperform their teacher. The usefulness of producing adaptive match-specific networks and their excellent performances are demonstrated quantitatively and qualitatively for soccer and basketball matches.
Scopus citations®
without self-citations
20