Paper published in a journal (Scientific congresses and symposiums)
ARTHuS: Adaptive Real-Time Human Segmentation in Sports through Online Distillation
Cioppa, Anthony; Deliège, Adrien; Istasse, Maxime et al.
2019In Conference on Computer Vision and Pattern Recognition Workshops, p. 2505-2514
Peer reviewed
 

Files


Full Text
Cioppa2019ARTHuS.pdf
Author postprint (9.46 MB)
ARTHuS: Adaptive Real-Time Human Segmentation in Sportsthrough Online Distillation
Download
Annexes
supplementary_material_ARTHuS.pdf
(8.35 MB)
Supplementary material
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
semantic segmentation; human segmentation; real-time; online distillation; deep learning; artificial intelligence; computer vision; soccer; basketball; sports; players; ARTHuS; sport; football
Abstract :
[en] Semantic segmentation can be regarded as a useful tool for global scene understanding in many areas, including sports, but has inherent difficulties, such as the need for pixel-wise annotated training data and the absence of well-performing real-time universal algorithms. To alleviate these issues, we sacrifice universality by developing a general method, named ARTHuS, that produces adaptive real-time match-specific networks for human segmentation in sports videos, without requiring any manual annotation. This is done by an online knowledge distillation process, in which a fast student network is trained to mimic the output of an existing slow but effective universal teacher network, while being periodically updated to adjust to the latest play conditions. As a result, ARTHuS allows to build highly effective real-time human segmentation networks that evolve through the match and that sometimes outperform their teacher. The usefulness of producing adaptive match-specific networks and their excellent performances are demonstrated quantitatively and qualitatively for soccer and basketball matches.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Telim
Disciplines :
Electrical & electronics engineering
Author, co-author :
Cioppa, Anthony   ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Deliège, Adrien   ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Istasse, Maxime;  UCLouvain
De Vleeschouwer, Christophe;  UCLouvain
Van Droogenbroeck, Marc  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
 These authors have contributed equally to this work.
Language :
English
Title :
ARTHuS: Adaptive Real-Time Human Segmentation in Sports through Online Distillation
Publication date :
June 2019
Event name :
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) - CVSports
Event organizer :
IEEE
Event place :
Long Beach, United States - California
Event date :
from 16-06-2019 to 20-06-2019
Audience :
International
Journal title :
Conference on Computer Vision and Pattern Recognition Workshops
Pages :
2505-2514
Peer reviewed :
Peer reviewed
Name of the research project :
DeepSport
Funders :
DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
Commentary :
Best CVSports paper award 2019
Available on ORBi :
since 12 April 2019

Statistics


Number of views
1250 (156 by ULiège)
Number of downloads
706 (87 by ULiège)

Scopus citations®
 
38
Scopus citations®
without self-citations
20
OpenCitations
 
18
OpenAlex citations
 
36

Bibliography


Similar publications



Contact ORBi