[20493614 - Endocrine Connections] AIP-mutated acromegaly resistant to first-generation somatostatin analogs_ long-term control with pasireotide LAR in two patients.pdf
Caputo M, Ucciero A, Mele C, De Marchi L, Magnani C, Cena T, Marzullo P, Barone-Adesi F & Aimaretti G. Use of administrative health databases to estimate incidence and prevalence of acromegaly in Piedmont Region, Italy. Journal of Endocrinological Investigation 2018 [epub]. (https://doi.org/10.1007/s40618-018-0928-7)
Gruppetta M, Mercieca C & Vassallo J. Prevalence and incidence of pituitary adenomas: a population based study in Malta. Pituitary 2013 16 545–553. (https://doi.org/10.1007/s11102-012-0454-0)
Gatto F, Trifirò G, Lapi F, Cocchiara F, Campana C, Dell’Aquila C, Ferrajolo C, Arvigo M, Cricelli C, Giusti M, et al. Epidemiology of acromegaly in Italy: analysis from a large longitudinal primary care database. Endocrine 2018 61 533–541. (https://doi.org/10.1007/s12020-018-1630-4)
Daly AF, Rixhon M, Adam C, Dempegioti A, Tichomirowa MA & Beckers A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liège, Belgium. Journal of Clinical Endocrinology and Metabolism 2006 91 4769–4775. (https://doi. org/10.1210/jc.2006-1668)
Petrossians P, Daly AF, Natchev E, Maione L, Blijdorp K, Sahnoun-Fathallah M, Auriemma R, Diallo AM, Hulting AL, Ferone D, et al. Acromegaly at diagnosis in 3173 patients from the Liège Acromegaly Survey (LAS) database. Endocrine-Related Cancer 2017 24 505–518. (https://doi.org/10.1530/ERC-17-0253)
Mantovani G, Lania AG & Spada A. GNAS imprinting and pituitary tumors. Molecular and Cellular Endocrinology 2010 326 15–18. (https://doi.org/10.1016/j.mce.2010.04.009)
Rostomyan L, Daly AF & Beckers A. Pituitary tumors associated with multiple endocrine neoplasia syndromes. Encyclopedia of Endocrine Diseases 2019 1 642–647. (https://doi.org/10.1016/B978-0-12-801238-3.66169-X)
Daly AF & Beckers A. Familial isolated pituitary adenomas (FIPA) and mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene. Endocrinology and Metabolism Clinics of North America 2015 44 19–25. (https://doi.org/10.1016/j.ecl.2014.10.002)
Daly AF, Tichomirowa MA, Petrossians P, Heliövaara E, Jaffrain-Rea ML, Barlier A, Naves LA, Ebeling T, Karhu A, Raappana A, et al. Clinical characteristics and therapeutic responses in patients with germ-line AIP mutations and pituitary adenomas: an international collaborative study. Journal of Clinical Endocrinology and Metabolism 2010 95 E373–E383. (https://doi.org/10.1210/jc.2009-2556)
Hernández-Ramírez LC, Gabrovska P, Dénes J, Stals K, Trivellin G, Tilley D, Ferrau F, Evanson J, Ellard S, Grossman AB, et al. Landscape of familial isolated and young-onset pituitary adenomas: prospective diagnosis in AIP mutation carriers. Journal of Clinical Endocrinology and Metabolism 2015 100 E1242–E1254. (https://doi.org/10.1210/jc.2015-1869)
Tuominen I, Heliövaara E, Raitila A, Rautiainen MR, Mehine M, Katainen R, Donner I, Aittomäki V, Lehtonen HJ, Ahlsten M, et al. AIP inactivation leads to pituitary tumorigenesis through defective Gαi-cAMP signaling. Oncogene 2015 34 1174–1184. (https://doi. org/10.1038/onc.2014.50)
Chahal HS, Trivellin G, Leontiou CA, Alband N, Fowkes RC, Tahir A, Igreja SC, Chapple JP, Jordan S, Lupp A, et al. Somatostatin analogs modulate AIP in somatotroph adenomas: the role of the ZAC1 pathway. Journal of Clinical Endocrinology and Metabolism 2012 97 1–10. (https://doi.org/10.1210/jc.2012-1111)
Theodoropoulou M, Tichomirowa MA, Sievers C, Yassouridis A, Arzberger T, Hougrand O, Deprez M, Daly AF, Petrossians P, Pagotto U, et al. Tumor ZAC1 expression is associated with the response to somatostatin analog therapy in patients with acromegaly. International Journal of Cancer 2009 125 2122–2126. (https://doi.org/10.1002/ijc.24602)
Joshi K, Daly AF, Beckers A & Zacharin M. Resistant paediatric somatotropinomas due to AIP mutations: role of pegvisomant. Hormone Research in Paediatrics 2018 90 196–202. (https://doi. org/10.1159/000488856)
Ben-Shlomo A & Melmed S. Pasireotide – a somatostatin analog for the potential treatment of acromegaly, neuroendocrine tumors and Cushing’s disease. IDrugs 2007 10 885–895.
Gadelha MR, Wildemberg LE, Bronstein MD, Gatto F & Ferone D. Somatostatin receptor ligands in the treatment of acromegaly. Pituitary 2017 20 100–108. (https://doi.org/10.1007/s11102-017-0791-0)
Körner M, Waser B, Christ E, Beck J & Reubi JC. A critical evaluation of sst3 and sst5 immunohistochemistry in human pituitary adenomas. Neuroendocrinology 2018 106 116–127. (https://doi. org/10.1159/000472563)
Daly AF, Vanbellinghen JF, Khoo SK, Jaffrain-Rea ML, Naves LA, Guitelman MA, Murat A, Emy P, Gimenez-Roqueplo AP, Tamburrano G, et al. Aryl hydrocarbon receptor-interacting protein gene mutations in familial isolated pituitary adenomas: analysis in 73 families. Journal of Clinical Endocrinology and Metabolism 2007 92 1891–1896. (https://doi.org/10.1210/jc.2006-2513)
Salvatori R, Daly AF, Quinones-Hinojosa A, Thiry A & Beckers A. A clinically novel AIP mutation in a patient with a very large, apparently sporadic somatotrope adenoma. Endocrinology, Diabetes and Metabolism Case Reports 2014 2014 140048. (https://doi. org/10.1530/EDM-14-0048)
Schmid HA. Pasireotide (SOM230): development, mechanism of action and potential applications. Molecular and Cellular Endocrinology 2008 286 69–74. (https://doi.org/10.1016/j.mce.2007.09.006)
Boscaro M, Ludlam WH, Atkinson B, Glusman JE, Petersenn S, Reincke M, Snyder P, Tabarin A, Biller BM, Findling J, et al. Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. Journal of Clinical Endocrinology and Metabolism 2009 94 115–122. (https://doi.org/10.1210/jc.2008-1008)
Petersenn S, Schopohl J, Barkan A, Mohideen P, Colao A, Abs R, Buchelt A, Ho YY, Hu K, Farrall AJ, et al. Pasireotide (SOM230) demonstrates efficacy and safety in patients with acromegaly: a randomized, multicenter, phase II trial. Journal of Clinical Endocrinology and Metabolism 2010 95 2781–2789. (https://doi. org/10.1210/jc.2009-2272)
Bronstein MD, Fleseriu M, Neggers S, Colao A, Sheppard M, Gu F, Shen CC, Gadelha M, Farrall AJ, Hermosillo Reséndiz K, et al. Switching patients with acromegaly from octreotide to pasireotide improves biochemical control: crossover extension to a randomized, double-blind, Phase III study. BMC Endocrine Disorders 2016 16 16. (https://doi.org/10.1186/s12902-016-0096-8)
Treppiedi D, Giardino E, Catalano R, Mangili F, Vercesi P, Sala E, Locatelli M, Arosio M, Spada A, Mantovani G, et al. Somatostatin analogs regulate tumor corticotrophs growth by reducing ERK1/2 activity. Molecular and Cellular Endocrinology 2019 483 31–38. (https://doi.org/10.1016/j.mce.2018.12.022)
Gatto F, Arvigo M, Amarù J, Campana C, Cocchiara F, Graziani G, Bruzzone E, Giusti M, Boschetti M & Ferone D. Cell specific interaction of pasireotide: review of preclinical studies in somatotroph and corticotroph pituitary cells. Pituitary 2019 22 89–99. (https://doi.org/10.1007/s11102-018-0926-y)
Villa C, Lagonigro MS, Magri F, Koziak M, Jaffrain-Rea ML, Brauner R, Bouligand J, Junier MP, Di F, Sainte-Rose C, et al. Hyperplasia-adenoma sequence in pituitary tumorigenesis related to aryl hydrocarbon receptor interacting protein gene mutation. Endocrine-Related Cancer 2011 18 347–356. (https://doi.org/10.1530/ERC-11-0059)
Yamamoto R, Robert Shima K, Igawa H, Kaikoi Y, Sasagawa Y, Hayashi Y, Inoshita N, Fukuoka H, Takahashi Y & Takamura T. Impact of preoperative pasireotide therapy on invasive octreotide-resistant acromegaly. Endocrine Journal 2018 65 1061–1067. (https://doi.org/10.1507/endocrj.EJ17-0487)
Potorac I, Petrossians P, Daly AF, Alexopoulou O, Borot S, Sahnoun Fathallah M, Castinetti F, Devuyst F, Jaffrain Rea ML, Briet C, et al. T2-weighted MRI signal predicts hormone and tumor responses to somatostatin analogs in acromegaly. Endocrine-Related Cancer 2016 23 871–881. (https://doi.org/10.1530/ERC-16-0356)
Jaffrain-Rea ML, Rotondi S, Turchi A, Occhi G, Barlier A, Peverelli E, Rostomyan L, Defilles C, Angelini M, Oliva MA, et al. Somatostatin analogues increase AIP expression in somatotropinomas, irrespective of Gsp mutations. Endocrine-Related Cancer 2013 20 753–766. (https://doi.org/10.1530/ERC-12-0322)
Jaffrain-Rea ML, Angelini M, Gargano D, Tichomirowa MA, Daly AF, Vanbellinghen JF, D’Innocenzo E, Barlier A, Giangaspero F, Esposito V, et al. Expression of aryl hydrocarbon receptor (AHR) and AHR-interacting protein in pituitary adenomas: pathological and clinical implications. Endocrine-Related Cancer 2009 16 1029–1043. (https://doi.org/10.1677/ERC-09-0094)
Kasuki L, Vieira Neto L, Wildemberg LE, Colli LM, De Castro M, Takiya CM & Gadelha MR. AIP expression in sporadic somatotropinomas is a predictor of the response to octreotide LAR therapy independent of SSTR2 expression. Endocrine-Related Cancer 2012 19 L25–L29. (https://doi.org/10.1530/ERC-12-0020)
KasukiJomoridePinho L, Vieira Neto L, Armondi Wildemberg LE, Gasparetto EL, Marcondes J, deAlmeidaNunes B, Takiya CM & Gadelha MR. Low aryl hydrocarbon receptor-interacting protein expression is a better marker of invasiveness in somatotropinomas than Ki-67 and p53. Neuroendocrinology 2011 94 39–48. (https://doi. org/10.1159/000322787)
Theodoropoulou M, Zhang J, Laupheimer S, Paez-Pereda M, Erneux C, Florio T, Pagotto U & Stalla GK. Octreotide, a somatostatin analogue, mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Research 2006 66 1576–1582. (https://doi. org/10.1158/0008-5472.CAN-05-1189)
Iacovazzo D, Carlsen E, Lugli F, Chiloiro S, Piacentini S, Bianchi A, Giampietro A, Mormando M, Clear AJ, Doglietto F, et al. Factors predicting pasireotide responsiveness in somatotroph pituitary adenomas resistant to first-generation somatostatin analogues: an immunohistochemical study. European Journal of Endocrinology 2016 174 241–250. (https://doi.org/10.1530/EJE-15-0832)
Petrossians P, Borges-Martins L, Espinoza C, Daly A, Betea D, Valdes-Socin H, Stevenaert A, Chanson P & Beckers A. Gross total resection or debulking of pituitary adenomas improves hormonal control of acromegaly by somatostatin analogs. European Journal of Endocrinology 2005 152 61–66. (https://doi.org/10.1530/eje.1.01824)
Karavitaki N, Turner HE, Adams CB, Cudlip S, Byrne JV, Fazal-Sanderson V, Rowlers S, Trainer PJ & Wass JA. Surgical debulking of pituitary macroadenomas causing acromegaly improves control by lanreotide. Clinical Endocrinology 2008 68 970–975. (https://doi. org/10.1111/j.1365-2265.2007.03139.x)
Rostomyan L, Daly AF, Petrossians P, Nachev E, Lila AR, Lecoq AL, Lecumberri B, Trivellin G, Salvatori R, Moraitis AG, et al. Clinical and genetic characterization of pituitary gigantism: an international collaborative study in 208 patients. Endocrine-Related Cancer 2015 22 745–757. (https://doi.org/10.1530/ERC-15-0320)
Beckers A, Petrossians P, Hanson J & Daly AF. The causes and consequences of pituitary gigantism. Nature Reviews Endocrinology 2018 14 705–720. (https://doi.org/10.1038/s41574-018-0114-1)
Mangupli R, Rostomyan L, Castermans E, Caberg JH, Camperos P, Krivoy J, Cuauro E, Bours V, Daly AF & Beckers A. Combined treatment with octreotide LAR and pegvisomant in patients with pituitary gigantism: clinical evaluation and genetic screening. Pituitary 2016 19 507–514. (https://doi.org/10.1007/s11102-016-0732-3)
Urbani C, Russo D, Raggi F, Lombardi M, Sardella C, Scattina I, Lupi I, Manetti L, Tomisti L, Marcocci C, et al. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism. Journal of Endocrinological Investigation 2014 37 949–955. (https://doi.org/10.1007/s40618-014-0123-4)
Raitila A, Georgitsi M, Bonora E, Vargiolu M, Tuppurainen K, Makinen MJ, Vierimaa O, Salmela PI, Launonen V, Vahteristo P, et al. Aryl hydrocarbon receptor interacting protein mutations seem not to associate with familial non-medullary thyroid cancer. Journal of Endocrinological Investigation 2009 32 426–429. (https://doi. org/10.1007/BF03346480)
Matsuo K, Tang SH & Fagin JA. Allelotype of human thyroid tumors: loss of chromosome 11q13 sequences in follicular neoplasms. Molecular Endocrinology 1991 5 1873–1879. (https://doi.org/10.1210/mend-5-12-1873)
Nord B, Larsson C, Wong FK, Wallin G, Teh BT & Zedenius J. Sporadic follicular thyroid tumors show loss of a 200-kb region in 11q13 without evidence for mutations in the MEN1 gene. Genes, Chromosomes and Cancer 1999 26 35–39. (https://doi.org/10.1002/(SICI)1098-2264(199909)26:1<35::AID-GCC5>3.0.CO;2-L)
Reznik Y, Bertherat J, Borson-Chazot F, Brue T, Chanson P, Cortet-Rudelli C, Delemer B, Tabarin A, Bisot-Locard S & Vergès B. Management of hyperglycaemia in Cushing’s disease: experts’ proposals on the use of pasireotide. Diabetes and Metabolism 2013 39 34–41. (https://doi.org/10.1016/j. diabet.2012.10.005)
Tarasco E, Seebeck P, Pfundstein S, Daly AF, Eugster PJ, Harris AG, Grouzmann E, Lutz TA & Boyle CN. Effect of AP102, a subtype 2 and 5 specific somatostatin analog, on glucose metabolism in rats. Endocrine 2017 58 124–133. (https://doi.org/10.1007/s12020-017-1386-2)