Xue, M., et al. Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem. Rev. 115 (2015), 7398–7501.
De Bo, G., et al. [2]Rotaxane formation by transition state stabilization. J. Am. Chem. Soc. 139 (2017), 8455–8457.
Jinks, M.A., et al. Stereoselective synthesis of mechanically planar chiral rotaxanes. Angew. Chem. Int. Ed. Engl. 57 (2018), 14806–14810.
Qiao, B., et al. A high-yield synthesis and acid–base response of phosphate-templated [3]rotaxanes. Chem. Commun. 52 (2016), 13675–13678.
Wang, Y., et al. Radically promoted formation of a molecular lasso. Chem. Sci. 8 (2017), 2562–2568.
Trabolsi, A., et al. Radically enhanced molecular recognition. Nat. Chem. 2 (2010), 42–49.
Xu, Y., et al. Concave-convex π–π template approach enables the synthesis of [10]cycloparaphenylene-fullerene [2]rotaxanes. J. Am. Chem. Soc. 140 (2018), 13413–13420.
Martínez-Periñán, E., et al. The mechanical bond on carbon nanotubes: diameter-selective functionalization and effects on physical properties. Nanoscale 8 (2016), 9254–9264.
Pérez, E.M., Putting rings around carbon nanotubes. Chem. Eur. J. 23 (2017), 12681–12689.
Leret, S., et al. Bimodal supramolecular functionalization of carbon nanotubes triggered by covalent bond formation. Chem. Sci. 8 (2017), 1927–1935.
Danon, J.J., et al. Triply threaded [4]rotaxanes. J. Am. Chem. Soc. 138 (2016), 12643–12647.
Waelès, P., et al. Synthesis of a pH-sensitive hetero[4]rotaxane molecular machine that combines [c2]daisy and [2]rotaxane arrangements. Chem. Eur. J. 22 (2016), 6837–6845.
Rao, S.-J., et al. One-pot synthesis of hetero[6]rotaxane bearing three different kinds of macrocycle through a self-sorting process. Chem. Sci. 8 (2017), 6777–6783.
Zhu, K., et al. Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat. Chem. 10 (2018), 625–630.
Fernando, I.R., et al. Sliding-ring catenanes. J. Am. Chem. Soc. 138 (2016), 10214–10225.
Mitra, R., et al. A bifunctional chiral [2]catenane based on 1,1ʹ-binaphthyl-phosphates. Chem. Commun. 52 (2016), 5977–5980.
Fan, Y.-Y., et al. An isolable catenane consisting of two Möbius conjugated nanohoops. Nat. Commun., 9, 2018, 3037.
Danon, J.J., et al. A six-crossing doubly interlocked [2]catenane with twisted rings, and a molecular granny knot. Angew. Chem. Int. Ed. Engl. 130 (2018), 14029–14033.
Steemers, L., et al. Synthesis of spiro quasi[1]catenanes and quasi[1]rotaxanes via a templated backfolding strategy. Nat. Commun., 8, 2017, 15392.
Au-Yeung, H.Y., et al. Strategies to assemble catenanes with multiple interlocked macrocycles. Inorg. Chem. 57 (2018), 3475–3485.
Wang, K., et al. Facile synthesis of [3]-, [4]- and [6]catenanes templated by orthogonal supramolecular interaction. Chem. Sci. 7 (2016), 2787–2792.
Nguyen, M., et al. Densely charged dodecacationic [3]- and tetracosacationic radial [5]catenanes. Chem 4 (2018), 2329–2344.
Gong, X., et al. Toward a charged homo[2]catenane employing diazaperopyrenium homophilic recognition. J. Am. Chem. Soc. 140 (2018), 6540–6544.
Wu, Q., et al. Poly[n]catenanes: synthesis of molecular interlocked chains. Science 358 (2017), 1434–1439.
Dabrowski-Tumanski, P., et al. In search of functional advantages of knots in proteins. PLoS One, 11, 2016, e0165986.
Kim, D.H., et al. Coordination-driven self-assembly of a molecular knot comprising sixteen crossings. Angew. Chem. Int. Ed. Engl. 57 (2018), 5669–5673.
Leigh, D.A., et al. Comment on coordination-driven self-assembly of a molecular knot comprising sixteen crossings. Angew. Chem. Int. Ed. Engl. 57 (2018), 12212–12214.
Cougnon, F.B.L., et al. A strategy to synthesize molecular knots and links using the hydrophobic effect. J. Am. Chem. Soc. 140 (2018), 12442–12450.
Zhang, L., et al. Molecular trefoil knot from a trimeric circular helicate. J. Am. Chem. Soc. 140 (2018), 4982–4985.
Zhang, L., et al. Stereoselective synthesis of a composite knot with nine crossings. Nat. Chem. 10 (2018), 1083–1088.
Leigh, D.A., et al. Securing a supramolecular architecture by tying a stopper knot. Angew. Chem. Int. Ed. Engl. 57 (2018), 10484–10488.
Lewis, J.E.M., et al. Properties and emerging applications of mechanically interlocked ligands. Chem. Commun. 53 (2017), 298–312.
Schröder, H.V., et al. Switchable synchronisation of pirouetting motions in a redox-active [3]rotaxane. Nanoscale 10 (2018), 21425–21433.
Steffenhagen, M., et al. A rotaxane scaffold bearing multiple redox center: synthesis, surface modification and electrochemical properties. Chem. Eur. J. 24 (2018), 1701–1708.
Hanozin, E., et al. Where ion mobility and molecular dynamics meet to unravel the (un)folding mechanisms of an oligorotaxane molecular switch. ACS Nano 11 (2017), 10253–10263.
Lee, B., et al. The mechanical strength of a mechanical bond: sonochemical polymer mechanochemistry of poly(catenane)copolymers. Angew. Chem. Int. Ed. Engl. 55 (2016), 13086–13089.
Zhang, M., De Bo, G., Impact of a mechanical bond on the activation of a mechanophore. J. Am. Chem. Soc. 140 (2018), 12724–12727.
Sluysmans, D., et al. Synthetic oligorotaxanes exert high forces when folding under mechanical load. Nat. Nanotechnol. 13 (2018), 209–213.
Sluysmans, D., et al. Dynamic force spectroscopy of synthetic oligorotaxane foldamers. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 9362–9366.
Naranjo, T., et al. Dynamics of individual molecular shuttles under mechanical force. Nat. Commun., 9, 2018, 4512.
Reddy, P., et al. Triangular cyclic rotaxanes: size, fluctuations, and switching properties. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 9367–9372.
He, H., et al. Rotaxane liquid crystals with variable length: the effect of switching efficiency on the isotropic–nematic transition. J. Chem. Phys., 148, 2018, 134905.
Pezzato, C., et al. Mastering the non-equilibrium assembly and operation of molecular machines. Chem. Soc. Rev. 46 (2017), 5491–5507.
Marcos, V., et al. Allosteric initiation and regulation of catalysis with a molecular knot. Science 352 (2016), 1555–1559.
Baggi, G., Loeb, S.J., Rotationally active ligands: dialing-up the co-conformations of a [2]rotaxane for metal ion binding. Angew. Chem. Int. Ed. Engl. 55 (2016), 12533–12537.
Hirokane, S., et al. Helix–rotaxane hybrid systems: rotaxane-stabilized, saccharide-induced chiral ethynylpyridine helices by a thermodynamic process. Eur. J. Org. Chem. 2017 (2017), 726–733.
Mitra, R., et al. Functional mechanically interlocked molecules: asymmetric organocatalysis with a catenated bifunctional Brønsted acid. Angew. Chem. Int. Ed. Engl. 56 (2017), 11456–11459.
Yu, G., et al. A pillar[5]arene-based [2]rotaxane lights up mitochondria. Chem. Sci. 7 (2016), 3017–3024.
Lim, J.Y.C., et al. A chiral halogen-bonding [3]rotaxane for the recognition and sensing of biologically relevant dicarboxylate anions. Angew. Chem. Int. Ed. Engl. 57 (2018), 584–588.
Chen, S., et al. An artificial molecular shuttle operates in lipid bilayers for ion transport. J. Am. Chem. Soc. 140 (2018), 17992–17998.
Sluysmans, D., Stoddart, J.F., Growing community of artificial molecular machinists. Proc. Natl. Acad. Sci. U. S. A. 115 (2018), 9359–9361.
Cheng, C., et al. An artificial molecular pump. Nat. Nanotechnol. 10 (2015), 547–553.
Pezzato, C., et al. An efficient artificial molecular pump. Tetrahedron 73 (2017), 4849–4857.
Wilson, M.R., et al. An autonomous chemically fuelled small-molecule motor. Nature 534 (2016), 235–240.
Erbas-Cakmak, S., et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358 (2017), 340–343.
De Bo, G., et al. Sequence-specific β-peptide synthesis by a rotaxane-based molecular machine. J. Am. Chem. Soc. 139 (2017), 10875–10879.
De Bo, G., et al. An artificial molecular machine that builds an asymmetric catalyst. Nat. Nanotechnol. 13 (2018), 381–385.
Wang, Y., et al. A light-driven molecular machine based on stiff stilbene. Chem. Commun. 54 (2018), 7991–7994.
Iwaso, K., et al. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat. Chem. 8 (2016), 625–632.
Ikejiri, S., et al. Solvent-free photoresponsive artificial muscles rapidly driven by molecular machines. J. Am. Chem. Soc. 140 (2018), 17308–17315.
Goujon, A., et al. Controlled sol–gel transition by actuating molecular machine based supramolecular polymers. J. Am. Chem. Soc. 139 (2017), 4923–4928.
Goujon, A., et al. Bistable [c2]daisy chain rotaxanes as reversible muscle-like actuators in mechanically active gels. J. Am. Chem. Soc. 139 (2017), 14825–14828.
Lin, Q., et al. Ring shuttling controls macroscopic motion in a three-dimensional printed polyrotaxane monolith. Angew. Chem. Int. Ed. Engl. 56 (2017), 4452–4457.
Kureha, T., et al. Decoupled thermo- and pH-responsive hydrogel microspheres cross-linked by rotaxane networks. Angew. Chem. Int. Ed. Engl. 56 (2017), 15393–15396.
Schwarz, F.B., et al. A photoswitchable rotaxane operating in monolayers on solid support. Chem. Commun. 52 (2016), 14458–14461.
Choi, S., et al. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357 (2017), 279–283.
Sagara, Y., et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. J. Am. Chem. Soc. 140 (2018), 1584–1587.