[en] Aims of the study
The aim of the study was to investigate the influence of fatigue on stride biomechanics measured by a portable accelerometer, the MyotestRun. Opportunities of the protocol allowed additional analysis on the device reliability and sensitivity.
Methods
Thirty-two male subjects, divided in two groups (runners and control), were involved in the study and achieved a treadmill progressive VO2max test; repeated run at constant velocity on a track and a field test at 90% of the VvO2max until exhaustion. The biomechanical measurements obtained from the MyotestRun allow exploring the reliability, the influence of speed, the differences between treadmill and track stride and the influence of fatigue.
Results
Results show an excellent reproducibility of the MyotestRun values, except for the asymmetry of the stride. No significant stride difference appears between treadmill and track conditions. The progressive test shows that all the parameters evolve with speed increment, confirming the sensitivity of the MyotestRun. The study shows changes in the stride with the fatigue, such as an increase of the contact time, a decrease of the force. However any change in the stride frequency is observed. If the study shows that the fatigue pattern is more constant in the runners group it also highlights adaptations to fatigue that can be very different from one subject to another.
Conclusion
This study confirmed that MyotestRun is a useful device in the stride analysis. The influence of fatigue on the stride is in accordance with most of the studies while confirming very important interindividual differences. [fr] Objectifs
Cette étude a comme objectif principal d’explorer l’influence de la fatigue sur les paramètres biomécaniques de la foulée mesurés par un accéléromètre portatif, le MyotestRun. Le protocole mis sur pied a permis des analyses complémentaires sur la reproductibilité et la sensibilité de l’outil utilisé.
Méthode
Trente-deux sujets masculins, répartis en deux groupes (Coureurs et Contrôle), ont réalisé un test d’effort progressif sur tapis roulant, des séquences de course à vitesse standardisée sur piste d’athlétisme et un test de temps limite à 90 % de la VMA sur piste. Les mesures biomécaniques obtenues à partir du MyotestRun ont permis d’explorer la reproductibilité des données, l’influence de la vitesse, les différences entre course sur tapis roulant et course sur piste ainsi que l’influence de la fatigue sur les paramètres biomécaniques.
Résultats
Les résultats montrent une excellente reproductibilité inter-essais des paramètres du MyotestRun à l’exception de l’asymétrie de la course. Aucune différence significative n’apparaît entre la foulée sur tapis roulant et la foulée sur piste. Le test progressif montre que tous les paramètres évoluent avec l’augmentation de la vitesse, confirmant la sensibilité du MyotestRun. L’étude met en évidence une modification de la foulée avec la fatigue qui se caractérise par un allongement du temps d’appui au sol et une diminution de la force, sans altération de la fréquence. Si l’étude met en évidence que l’évolution de la foulée avec la fatigue est plus uniforme dans le groupe Coureurs elle souligne également des adaptations à la fatigue qui peuvent être très différentes d’un sujet à l’autre.
Conclusion
Cette étude démontre d’une part, que le MyotestRun peut être un outil de terrain utile à l’analyse biomécanique de la course, et d’autre part, que l’influence de la fatigue sur la foulée, s’accorde avec la plupart des études tout en confirmant des différences interindividuelles très importantes.
Disciplines :
Orthopedics, rehabilitation & sports medicine
Author, co-author :
Jidovtseff, Boris ; Université de Liège - ULiège > Département des sciences de la motricité > Déterm. perf. & asp. gén.et spéc.de l'entr.y comp.de ht niv.
RODRIGUEZ DE LA CRUZ, Carlos ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service de pneumologie - allergologie
Bury, Thierry ; Université de Liège - ULiège > Département des sciences de la motricité > Physiologie humaine et physiologie de l'effort physique
Deflandre, Dorian
Language :
French
Title :
Influence de la fatigue sur les paramètres biomécaniques de la foulée mesurés par accéléromètrie
Alternative titles :
[en] Influence of fatigue on stride biomechanical parameters measured by an accelerometer
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Kyr, H., Inen, L., Belli, A., Komi, P.V., Biomechanical factors affecting running economy. Med Sci Sport Exerc 33:8 (2001), 1330–1337.
Anderson, T., Biomechanics and running economy. Sports Med 22:2 (1996), 76–89.
Nummela, A., Keränen, T., Mikkelsson, L., Factors related to top running speed and economy. Int J Sports Med 28:8 (2007), 655–661.
Foch, E., Reinbolt, J.A., Zhang, S., Fitzhugh, E.C., Milner, C.E., Associations between iliotibial band injury status and running biomechanics in women. Gait Posture 41:2 (2015), 706–710.
Fyhrie, D.P., Milgrom, C., Hoshaw, S.J., Simkin, A., Dar, S., Drumb, D., et al. Effect of fatiguing exercise on longitudinal bone strain as related to stress fracture in humans. Ann Biomed Eng 26:4 (1998), 660–665.
Watari, R., Hettinga, B., Osis, S., Ferber, R., Validation of a torso-mounted accelerometer for measures of vertical oscillation and ground contact time during treadmill running. J Appl Biomechanics 11:1 (2015), 86–95.
Laffaye, G., Jidovsteff, B., Analyse des sauts et de la course à pied par accélérométrie. Instrum Mes Metrol 14:3–4 (2014), 229–249.
Gindre, C., Lussiana, T., Hebert-Losier, K., Morin J-B. Reliability and validity of the Myotest ® for measuring running stride kinematics. J Sports Sci 34:7 (2016), 664–670.
Bergamin, M., Ermolao, A., Sieverdes, J.C., Zaccaria, M., Zanuso, S., Validation of the mywellness key in walking and running speeds. J Sports Sci Med 11:1 (2012), 57–63.
Norris, M., Anderson, R., Kenny, I.C., Method analysis of accelerometers and gyroscopes in running gait: a systematic review. Proc Inst Mech Eng 228:1 (2014), 3–15.
Hausswirth, C., Le Meur, Y., Couturier, A., Bernard, T., Brisswalter, J., Accuracy and repeatability of the polar?RS800sd to evaluate stride rate and running speed. Int J Sports Med 30:5 (2009), 354–359.
Hunter I, Tracy J, Walker S, Eatough J. Accuracy of running data from the garmin forerunner.; Available from: http://archive.asbweb.org/conferences/2015/abstracts/64BD–Accuracy Of Running Data From The Garmin Forerunner–(Hunter).pdf.
Balsalobre-Fernandez, C., Agopyan, H., Morin, J.-B., The validity and reliability of an iPhone app for measuring running mechanics. J Appl Biomech, 2017, 1–5.
Cavagna, G.A., Franzetti, P., Heglund, N.C., Willems, P., The determinants of the step frequency in running, trotting and hopping in man and other vertebrates. J Physiol 399:1 (1988), 81–92, 10.1113/jphysiol.1988.sp017069.
Gouttebarge, V., Wolfard, R., Griek, N., Ruiter, C.J., de, Boschman, J.S., Dieën, J.H.van., Reproducibility and validity of the myotest for measuring step frequency and ground contact time in recreational runners. J Hum Kinet 45:1 (2015), 19–26.
Elliot, B., Ackland, T., Biomechanical effects of fatigue on 10,000 meter running technique. Res Q Exerc Sport 52:2 (1981), 160–166.
Candau, R., Belli, A., Millet, G.Y., Georges, D., Barbier, B., Rouillon, J.D., Energy cost and running mechanics during a treadmill run to voluntary exhaustion in humans. Eur J Appl Physiol 77:6 (1998), 479–485.
Gazeau, F., Koralsztein, J., Billat, V., Biomechanical events in the time to exhaustion at maximum aerobic speed. Arch Physiol 105:6 (1997), 583–590.
Rabita, G., Slawinski, J., Girard, O., Bignet, F., Spring-mass behavior during exhaustive run at constant velocity in elite triathletes. Med Sci 43:4 (2011), 685–692.
Portney, L.G., Watkins, M.P., Portney, G.W.P., Foundations of clinical research: applications to practice. 2009, Pearson Education,Inc, New Jersey 892 p.
Deflandre, D., Schwartz, C., Weerts, J.P., Croisier, J.-L., Bury, T., A comparison of 3D methods for identifying the stance phase in treadmill running for both rearfoot and forefoot runners. J Sport Sci 4:3 (2016), 124–131.
van Ingen Schenau, G.J., Some fundamental aspects of the biomechanics of overground versus treadmill locomotion. Med Sci Sports Exerc 12:4 (1980), 257–261.
Elliot, B.C., Blanksby, B.A., A cinematographic analysis of overground and treadmill running by males and females. Med Sci Sport Exerc 8:2 (1976), 84–87.
Riley, P.O., Dicharry, J., Franz, J., Croce, U., Della, Wilder, R.P., Kerrigan, D.C., A kinematics and kinetic comparison of overground and treadmill running. Med Sci Sport Exerc 40:6 (2008), 1093–1100.
Cavanagh, P., Kram, R., Stride length in distance running: velocity, body dimensions, and added mass effects. Med Sci Sport Exerc 21:4 (1989), 467–479.
Leboeuf, F., Achard De Leluardière, F., Lacouture, P., Duboy, J., Leplanquais, F., Junqua, A., Étude biomécanique de la course. Encyclopédie Médico-chirurgicale, traité de podologie, 2006, 1–16 28.
Millet, G.Y., Morin, J.-B., Degache, F., Edouard, P., Feasson, L., Verney, J., et al. Running from Paris to Beijing: biomechanical and physiological consequences. Eur J Appl Physiol 107:6 (2009), 731–738.
Lee, C.R., Farley, C.T., Determinants of the center of mass trajectory in human walking and running. J Exp Biol, 201(21), 1998.
Arampatzis, A., Brüggemann, G., Metzler, V., The effect of speed on leg stiffness and joint kinetics in human running. J Biomech 32:12 (1999), 1349–1353.
Blondel, N., Berthoin, S., Billat, V., Relationship between run times to exhaustion at 90, 100, 120, 140 % of vV O2max and velocity expressed relatively to critical velocity maximal velocity. Int J. 22:01 (2001), 27–33.
Billat, V., Binsse, V., Petit, B., Koralsztein, J.J.P., High level runners are able to maintain a VO2 steady-state below VO2max in an all-out run over their critical velocity. Arch Physiol Biochem 106:1 (1998), 38–45.
Billat, V.L., Richard, R., Binsse, V.M., Koralsztein, J.P., Haouzi, P., The Vo2 slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. J Appl Physiol 85:6 (1998), 2118–2124.
Avogadro, P., Dolenec, A., Belli, A., Changes in mechanical work during severe exhausting running. Eur J Appl Physiol 90:1–2 (2003), 165–170.
Bosquet, L., Léger, L., Legros, P., Methods to determine aerobic endurance. Sport Med 32:11 (2002), 675–700.
Girard, O., Micallef, J., Millet, G., Changes in spring-mass model characteristics during repeated running sprints. Eur J Appl Physiol 111:1 (2011), 125–134.
Fourchet, F., Girard, O., Kelly, L., Horobeanu, C., Millet, G.P., Changes in leg spring behaviour, plantar loading and foot mobility magnitude induced by an exhaustive treadmill run in adolescent middle-distance runners. J Sci Med Sport 18:2 (2015), 199–203.
Chan-Roper, M., Hunter, I., Myrer, W.J., Eggett, L.D., Seeley, K.M., Kinematic changes during a marathon for fast and slow runners. J Sports Sci Med 11:1 (2012), 77–82.
Hunter, I., Smith, G.A., Preferred and optimal stride frequency, stiffness and economy: changes with fatigue during a 1-h high-intensity run. Eur J Appl Physiol 100:6 (2007), 653–661.
Slawinski, J., Billat, V., Changes in internal mechanical cost during overground running to exhaustion. Med Sci Sport Exerc 37:7 (2005), 1180–1186.
Slawinski, J., Heubert, R., Quievre, J., Billat, V., Changes in spring-mass model parameters and energy cost during track running to exhaustion. J Strength Cond Res. 22:3 (2008), 930–936.
Morin, J.-B., Dalleau, G., Kyröläinen, H., Jeannin, T., Belli, A., A Simple Method for Measuring Stiffness during Running. J Appl Biomech 21:2 (2005), 167–180.
Dutto, D.J., Smith, G.A., Changes in spring-mass characteristics during treadmill running to exhaustion. Med Sci Sport Exerc 34:8 (2002), 1324–1331.
Mizrahi, J., Verbitsky, O., Isakov, E., Daily, D., Effect of fatigue on leg kinematics and impact acceleration in long distance running. Hum Mov Sci 19:2 (2000), 139–151.
Kyröläinen, H., Pullinen, T., Candau, R., Avela, J., Huttunen, P., Komi, P., V. Effects of marathon running on running economy and kinematics. Eur J Appl Physiol 82:4 (2000), 297–304.
Nicol, C., Komi, P.V., Marconnet, P., Fatigue effects of marathon running on neuromuscular performance. Scand J Med Sci Sports 1:1 (2007), 10–17.
Halvorsen, K., Eriksson, M., Gullstrand, L., Acute effects of reducing vertical displacement and step frequency on running economy. J Strength Cond Res 26:8 (2012), 2065–2070.
Gindre, C., Lussiana, T., Hebert-Losier, K., Mourot, L., Aerial and terrestrial patterns: a novel approach to analyzing human running. Int J Sports Med 37:1 (2015), 25–26.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.