[en] Although mechanical stimulation is considered a promising approach to accelerate implant integration, our understanding of load-driven bone formation and resorption around implants is still limited. This lack of knowledge may delay the development of effective loading protocols to prevent implant loosening, especially in osteoporosis. In healthy bone, formation and resorption are mechanoregulated processes. In the intricate context of peri-implant bone regeneration, it is not clear whether bone (re)modelling can still be load-driven. Here, we investigated the mechanical control of peri-implant bone (re)modelling with a well-controlled mechanobiological experiment. We applied cyclic mechanical loading after implant insertion in tail vertebrae of oestrogen depleted mice and we monitored peri-implant bone response by in vivo micro-CT. Experimental data were combined with micro-finite element simulations to estimate local tissue strains in (re)modelling locations. We demonstrated that a substantial increase in bone mass around the implant could be obtained by loading the entire bone. This augmentation could be attributed to a large reduction in bone resorption rather than to an increase in bone formation. We also showed that following implantation, mechanical regulation of bone (re)modelling was transiently lost. Our findings should help to clarify the role of mechanical stimulation on the maintenance of peri-implant bone mass.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Li, Zihui
Betts, Duncan
Kuhn, Gisela
Schirmer, Michael
Müller, Ralph
Ruffoni, Davide ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Mécanique des matériaux biologiques et bioinspirés
Language :
English
Title :
Mechanical regulation of bone formation and resorption around implants in a mouse model of osteopenic bone
Sambrook P, Cooper C. 2006 Osteoporosis. Lancet 367, 2010-2018. (doi:10.1016/S0140-6736(06)68891-0)
Mori H, Manabe M, Kurachi Y, Nagumo M. 1997 Osseointegration of dental implants in rabbit bone with low mineral density. J. Oral Maxillofac. Surg. 55, 351-361. (doi:10.1016/S0278-2391(97) 90124-5)
Zhang S, Guo Y, Zou H, Sun N, Zhao D, Liu W, Dong Y, Cheng G, Yuan Q. 2015 Effect of estrogen deficiency on the fixation of titanium implants in chronic kidney disease mice. Osteoporos. Int. 26, 1073-1080. (doi:10.1007/s00198-014-2952-6)
Beppu K, Kido H, Watazu A, Teraoka K, Matsuura M. 2013 Peri-implant bone density in senile osteoporosis-changes from implant placement to osseointegration. Clin. Implant Dent. Relat. Res. 15, 217-226. (doi:10.1111/j.1708-8208.2011.00350.x)
Rocca M, Fini M, Giaveresi G, Aldini NN, Giardino R. 2002 Osteointegration of hydroxyapatite-coated and uncoated titanium screws in long-term ovariectomized sheep. Biomaterials 23, 1017-1023. (doi:10.1016/S0142-9612(01)00213-7)
Li Z, Kuhn G, Schirmer M, Müller R, Ruffoni D. 2017 Impaired bone formation in ovariectomized mice reduces implant integration as indicated by longitudinal in vivo micro-computed tomography. PLoS ONE 12, e0184835. (doi:10.1371/journal.pone. 0184835)
Ruffoni D, Müller R, van Lenthe GH. 2012 Mechanisms of reduced implant stability in osteoporotic bone. Biomech. Model. Mechanobiol. 11, 313-323. (doi:10.1007/s10237-011-0312-4)
Ruffoni D, Wirth AJ, Steiner JA, Parkinson IH, Müller R, van Lenthe GH. 2012 The different contributions of cortical and trabecular bone to implant anchorage in a human vertebra. Bone 50, 733-738. (doi:10.1016/j.bone.2011.11.027)
Li Z, Müller R, Ruffoni D. 2018 Bone remodeling and mechanobiology around implants: insights from small animal imaging. J. Orthop. Res. 36, 584-593.
Schulte FA, Ruffoni D, Lambers FM, Christen D, Webster DJ, Kuhn G, Müller R. 2013 Local mechanical stimuli regulate bone formation and resorption in mice at the tissue level. PLoS ONE 8, e62172. (doi:10.1371/journal.pone.0062172)
Borer KT. 2005 Physical activity in the prevention and amelioration of osteoporosis in women. Sports Med. 35, 779-830. (doi:10.2165/00007256-200535090-00004)
Singh MAF. 2015 Exercise and bone health. In Nutrition and bone health (eds MF Holick, JW Nieves), pp. 505-542. New York, NY: Springer New York.
Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD. 2000 Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704-706. (doi:10.1038/ 35015116)
Dunlop J, Hartmann M, Bréchet Y, Fratzl P, Weinkamer R. 2009 New suggestions for the mechanical control of bone remodeling. Calcif. Tissue Int. 85, 45-54. (doi:10.1007/s00223-009-9242-x)
Tsubota K, Adachi T, Tomita Y. 2002 Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J. Biomech. 35, 1541-1551. (doi:10.1016/S0021-9290(02) 00173-2)
Maurer MM, Weinkamer R, Müller R, Ruffoni D. 2015 Does mechanical stimulation really protect the architecture of trabecular bone? A simulation study. Biomech. Model. Mechanobiol. 14, 795-805. (doi:10.1007/s10237-014-0637-x)
Mulvihill BM, McNamara LM, Prendergast PJ. 2008 Loss of trabeculae by mechano-biological means may explain rapid bone loss in osteoporosis. J. R. Soc. Interface 5, 1243-1253. (doi:10.1098/rsif. 2007.1341)
Schulte FA, Zwahlen A, Lambers FM, Kuhn G, Ruffoni D, Betts D, Webster DJ, Müller R. 2013 Strain-adaptive in silico modeling of bone adaptation-a computer simulation validated by in vivo micro-computed tomography data. Bone 52, 485-492. (doi:10.1016/j.bone.2012.09.008)
De Souza RL, Matsuura M, Eckstein F, Rawlinson SC, Lanyon LE, Pitsillides AA. 2005 Non-invasive axial loading of mouse tibiae increases cortical bone formation and modifies trabecular organization: a new model to study cortical and cancellous compartments in a single loaded element. Bone 37, 810-818. (doi:10.1016/j.bone.2005.07.022)
Baumann AP, Aref MW, Turnbull TL, Robling AG, Niebur GL, Allen MR, Roeder RK. 2015 Development of an in vivo rabbit ulnar loading model. Bone 75, 55-61. (doi:10.1016/j.bone.2015.01.022)
Webster DJ, Morley PL, van Lenthe GH, Müller R. 2008 A novel in vivo mouse model for mechanically stimulated bone adaptation-a combined experimental and computational validation study. Comput. Methods Biomech. Biomed. Engin. 11, 435-441. (doi:10.1080/10255840802078014)
Guo XE, Eichler MJ, Takai E, Kim CH. 2002 Quantification of a rat tail vertebra model for trabecular bone adaptation studies. J. Biomech. 35, 363-368. (doi:10.1016/S0021-9290(01) 00212-3)
Lynch MA, Brodt MD, Silva MJ. 2010 Skeletal effects of whole-body vibration in adult and aged mice. J. Orthop. Res. 28, 241-247.
Lambers FM, Koch K, Kuhn G, Ruffoni D, Weigt C, Schulte FA, Müller R. 2013 Trabecular bone adapts to long-term cyclic loading by increasing stiffness and normalization of dynamic morphometric rates. Bone 55, 325-334. (doi:10. 1016/j.bone.2013.04.016)
Schulte FA, Lambers FM, Kuhn G, Müller R. 2011 In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone 48, 433-442. (doi:10. 1016/j.bone.2010.10.007)
Lukas C, Ruffoni D, Lambers FM, Schulte FA, Kuhn G, Kollmannsberger P, Weinkamer R, Müller R. 2013 Mineralization kinetics in murine trabecular bone quantified by time-lapsed in vivo micro-computed tomography. Bone 56, 55-60. (doi:10.1016/j.bone. 2013.05.005)
Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. 2014 Mineralizing surface is the main target of mechanical stimulation independent of age: 3D dynamic in vivo morphometry. Bone 66, 15-25. (doi:10.1016/j. bone.2014.05.013)
Birkhold AI, Razi H, Weinkamer R, Duda GN, Checa S, Willie BM. 2015 Monitoring in vivo (re)modeling: a computational approach using 4D microCT data to quantify bone surface movements. Bone 75, 210-221. (doi:10.1016/j.bone.2015.02.027)
Ruffoni D, van Lenthe GH. 2017 Finite element analysis in bone research: a computational method relating structure to mechanical function. In Comprehensive biomaterials II (ed. P Ducheyne), pp. 169-196. Oxford, UK: Elsevier.
Birkhold AI, Razi H, Duda GN, Weinkamer R, Checa S, Willie BM. 2016 The periosteal bone surface is less mechano-responsive than the endocortical. Sci. Rep. 6, 23480.
Cresswell EN, Goff MG, Nguyen TM, Lee WX, Hernandez CJ. 2016 Spatial relationships between bone formation and mechanical stress within cancellous bone. J. Biomech. 49, 222-228. (doi:10. 1016/j.jbiomech.2015.12.011)
Christen P, Ito K, Ellouz R, Boutroy S, Sornay-Rendu E, Chapurlat RD, Van Rietbergen B. 2014 Bone remodelling in humans is load-driven but not lazy. Nat. Commun. 5, 4855. (doi:10.1038/ncomms5855)
Razi H, Birkhold AI, Weinkamer R, Duda GN, Willie BM, Checa S. 2015 Aging leads to a dysregulation in mechanically driven bone formation and resorption. J. Bone Miner. Res. 30, 1864-1873. (doi:10.1002/ jbmr.2528)
Li Z, Kuhn G, von Salis-Soglio M, Cooke SJ, Schirmer M, Müller R, Ruffoni D. 2015 In vivo monitoring of bone architecture and remodeling after implant insertion: the different responses of cortical and trabecular bone. Bone 81, 468-477. (doi:10.1016/j. bone.2015.08.017)
Kettenberger U, Ston J, Thein E, Procter P, Pioletti DP. 2014 Does locally delivered zoledronate influence pen-implant bone formation?-Spatio-temporal monitoring of bone remodeling in vivo. Biomaterials 35, 9995-10006. (doi:10.1016/j. biomaterials.2014.09.005)
Jariwala SH et al. 2016 Time course of peri-implant bone regeneration around loaded and unloaded implants in a rat model. J. Orthop. Res. 35, 997-1006. (doi:10.1002/jor.23360)
Lambers FM, Schulte FA, Kuhn G, Webster DJ, Müller R. 2011 Mouse tail vertebrae adapt to cyclic mechanical loading by increasing bone formation rate and decreasing bone resorption rate as shown by time-lapsed in vivo imaging of dynamic bone morphometry. Bone 49, 1340-1350. (doi:10.1016/ j.bone.2011.08.035)
Irish J, Virdi AS, Sena K, McNulty MA, Sumner DR. 2013 Implant placement increases bone remodeling transiently in a rat model. J. Orthop. Res. 31, 800-806. (doi:10.1002/jor.22294)
Lambers FM, Kuhn G, Weigt C, Koch KM, Schulte FA, Müller R. 2015 Bone adaptation to cyclic loading in murine caudal vertebrae is maintained with age and directly correlated to the local micromechanical environment. J. Biomech. 48, 1179-1187. (doi:10.1016/j.jbiomech.2014.11.020)
Campbell GM, Tiwari S, Grundmann F, Purcz N, Schem C, Glüer C-C. 2014 Three-dimensional image registration improves the long-term precision of in vivo micro-computed tomographic measurements in anabolic and catabolic mouse models. Calcif. Tissue Int. 94, 282-292. (doi:10.1007/s00223-013-9809-4)
Lu Y, Boudiffa M, Dall'Ara E, Liu Y, Bellantuono I, Viceconti M. 2017 Longitudinal effects of parathyroid hormone treatment on morphological, densitometric and mechanical properties of mouse tibia. J. Mech. Behav. Biomed. Mater. 75, 244-251. (doi:10.1016/j.jmbbm.2017.07.034)
Boyd SK, Davison P, Müller R, Gasser JA. 2006 Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone 39, 854-862. (doi:10. 1016/j.bone.2006.04.017)
Lambers FM, Kuhn G, Schulte FA, Koch K, Müller R. 2012 Longitudinal assessment of in vivo bone dynamics in a mouse tail model of postmenopausal osteoporosis. Calcif. Tissue Int. 90, 108-119. (doi:10.1007/s00223-011-9553-6)
Ruffoni D, Kohler T, Voide R, Wirth AJ, Donahue LR, Müller R, Van Lenthe GH. 2013 High-throughput quantification of the mechanical competence of murine femora-a highly automated approach for large-scale genetic studies. Bone 55, 216-221. (doi:10.1016/j.bone.2013.02.015)
Bounoure L, Ruffoni D, Müller R, Kuhn GA, Bourgeois S, Devuyst O, Wagner CA. 2014 The role of the renal ammonia transporter Rhcg in metabolic responses to dietary protein. J. Am. Soc. Nephrol. 25, 2040-2052. (doi:10.1681/ASN.2013050466)
Schulte FA, Lambers FM, Mueller TL, Stauber M, Müller R. 2014 Image interpolation allows accurate quantitative bone morphometry in registered micro-computed tomography scans. Comput. Methods Biomech. Biomed. Engin. 17, 539-548. (doi:10. 1080/10255842.2012.699526)
Kohler T, Stauber M, Donahue LR, Müller R. 2007 Automated compartmental analysis for high-throughput skeletal phenotyping in femora of genetic mouse models. Bone 41, 659-667. (doi:10. 1016/j.bone.2007.05.018)
Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. 2010 Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J. Bone Miner. Res. 25, 1468-1486. (doi:10.1002/jbmr.141)
Levchuk A, Zwahlen A, Weigt C, Lambers FM, Badilatti SD, Schulte FA, Kuhn G, Müller R. 2014 The Clinical Biomechanics Award 2012-presented by the European Society of Biomechanics: large scale simulations of trabecular bone adaptation to loading and treatment. Clin. Biomech. 29, 355-362. (doi:10.1016/j.clinbiomech.2013.12.019)
Christen P, van Rietbergen B, Lambers FM, Müller R, Ito K. 2012 Bone morphology allows estimation of loading history in a murine model of bone adaptation. Biomech. Model. Mechanobiol. 11, 483-492. (doi:10.1007/s10237-011-0327-x)
Flaig C, Arbenz P. 2011 A scalable memory efficient multigrid solver for micro-finite element analyses based on CT images. Parallel Comput. 37, 846-854. (doi:10.1016/j.parco.2011.08.001)
Blanchard R, Dejaco A, Bongaers E, Hellmich C. 2013 Intravoxel bone micromechanics for microCT-based finite element simulations. J. Biomech. 46, 2710-2721. (doi:10.1016/j.jbiomech.2013.06.036)
Niebur GL, Yuen JC, Hsia AC, Keaveny TM. 1999 Convergence behavior of high-resolution finite element models of trabecular bone. J. Biomech. Eng. 121, 629-635. (doi:10.1115/1.2800865)
Guldberg RE, Hollister SJ, Charras GT. 1998 The accuracy of digital image-based finite element models. J. Biomech. Eng. 120, 289-295. (doi:10. 1115/1.2798314)
Knowles NK, Ip K, Ferreira LM. 2018 The effect of material heterogeneity, element type, and down-sampling on trabecular stiffness in micro finite element models. Ann. Biomed. Eng. 47, 615-623.
Pistoia W, van Rietbergen B, Lochmuller EM, Lill CA, Eckstein F, Ruegsegger P. 2002 Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30, 842-848. (doi:10.1016/S8756-3282(02)00736-6)
Webster D, Wasserman E, Ehrbar M, Weber F, Bab I, Müller R. 2010 Mechanical loading of mouse caudal vertebrae increases trabecular and cortical bone mass-dependence on dose and genotype. Biomech. Model. Mechanobiol. 9, 737-747. (doi:10.1007/ s10237-010-0210-1)
Wehrle E, Wehner T, Heilmann A, Bindl R, Claes L, Jakob F, Amling M, Ignatius A. 2014 Distinct frequency dependent effects of whole-body vibration on non-fractured bone and fracture healing in mice. J. Orthop. Res. 32, 1006-1013. (doi:10.1002/jor.22629)
Stadelmann VA, Conway CM, Boyd SK. 2013 In vivo monitoring of bone-implant bond strength by microCT and finite element modelling. Comput. Methods Biomech. Biomed. Engin. 16, 993-1001. (doi:10.1080/10255842.2011.648625)
Puleo DA, Nanci A. 1999 Understanding and controlling the bone-implant interface. Biomaterials 20, 2311-2321. (doi:10.1016/S0142-9612(99)00160-X)
Berglundh T, Abrahamsson I, Lang NP, Lindhe J. 2003 De novo alveolar bone formation adjacent to endosseous implants-a model study in the dog. Clin. Oral Implants Res. 14, 251-262. (doi:10.1034/ j.1600-0501.2003.00972.x)
Wang L, Ye T, Deng L, Shao J, Qi J, Zhou Q, Wei L, Qiu S. 2014 Repair of microdamage in osteonal cortical bone adjacent to bone screw. PLoS ONE 9, e89343. (doi:10.1371/journal.pone.0089343)
Ruffoni D, Dunlop JWC, Fratzl P, Weinkamer R. 2010 Effect of minimal defects in periodic cellular solids. Philos. Mag. 90, 1807-1818. (doi:10.1080/ 14786430903571404)
Zorzetto L, Ruffoni D. 2017 Re-entrant inclusions in cellular solids: from defects to reinforcements. Compos. Struct. 176, 195-204. (doi:10.1016/j. compstruct.2017.05.039)
Zhang X, Vandamme K, Torcasio A, Ogawa T, van Lenthe GH, Naert I, Duyck J. 2012 In vivo assessment of the effect of controlled high- and low-frequency mechanical loading on peri-implant bone healing. J. R. Soc. Interface 9, 1697-1704. (doi:10.1098/rsif.2011.0820)
Ogawa T, Zhang X, Naert I, Vermaelen P, Deroose CM, Sasaki K, Duyck J. 2011 The effect of whole-body vibration on peri-implant bone healing in rats. Clin. Oral Implants Res. 22, 302-307. (doi:10.1111/ j.1600-0501.2010.02020.x)
Verbruggen SW, Vaughan TJ, McNamara LM. 2014 Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach. Biomech. Model. Mechanobiol. 13, 85-97. (doi:10.1007/s10237-013-0487-y)
Scheiner S, Pivonka P, Hellmich C. 2016 Poromicromechanics reveals that physiological bone strains induce osteocyte-stimulating lacunar pressure. Biomech. Model. Mechanobiol. 15, 9-28. (doi:10.1007/s10237-015-0704-y)
Varga P et al. 2015 Synchrotron X-ray phase nano-tomography-based analysis of the lacunar-canalicular network morphology and its relation to the strains experienced by osteocytes in situ as predicted by case-specific finite element analysis. Biomech. Model. Mechanobiol. 14, 267-282. (doi:10.1007/s10237-014-0601-9)
You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR. 2000 Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J. Biomech. Eng. 122, 387-393. (doi:10.1115/1.1287161)
Adachi T, Sato K, Tomita Y. 2003 Directional dependence of osteoblastic calcium response to mechanical stimuli. Biomech. Model. Mechanobiol. 2, 73-82. (doi:10.1007/s10237-003-0029-0)
Verbruggen SW, Vaughan TJ, McNamara LM. 2012 Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J. R. Soc. Interface 9, 2735-2744. (doi:10.1098/rsif.2012.0286)
Hartmann MA, Dunlop JWC, Bréchet YJM, Fratzl P, Weinkamer R. 2011 Trabecular bone remodelling simulated by a stochastic exchange of discrete bone packets from the surface. J. Mech. Behav. Biomed. Mater. 4, 879-887. (doi:10.1016/j.jmbbm.2011. 03.005)
Pastrama M-I, Scheiner S, Pivonka P, Hellmich C. 2018 A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation. Bone 107, 208-221. (doi:10. 1016/j.bone.2017.11.009)
Hellmich C, Celundova D, Ulm F-J. 2009 Multiporoelasticity of hierarchically structured materials: micromechanical foundations and application to bone. J. Eng. Mech. 135, 382-394. (doi:10.1061/(ASCE)EM.1943-7889.0000001)
Lewis KJ et al. 2017 Osteocyte calcium signals encode strain magnitude and loading frequency in vivo. Proc. Natl Acad. Sci. USA 114, 11775. (doi:10. 1073/pnas.1707863114)
Gatti V, Azoulay EM, Fritton SP. 2018 Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone. J. Biomech. 66, 127-136. (doi:10. 1016/j.jbiomech.2017.11.011)
Stadelmann VA, Terrier A, Pioletti DP. 2008 Microstimulation at the bone-implant interface upregulates osteoclast activation pathways. Bone 42, 358-364. (doi:10.1016/j.bone.2007.09.055)
Soballe K, Hansen ES, Rasmussen HB, Jorgensen PH, Bunger C. 1992 Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions. J. Orthop. Res. 10, 285-299. (doi:10.1002/jor. 1100100216)
Dai J, Cheng N, Miron RJ, Shi B, Cheng X, Zhang Y. 2014 Effect of decreased implant healing time on bone (re)modeling adjacent to plateaued implants under functional loading in a dog model. Clin. Oral Investig. 18, 77-86. (doi:10.1007/s00784-013-0929-z)
Zwahlen A, Christen D, Ruffoni D, Schneider P, Schmolz W, Müller R. 2015 Inverse finite element modeling for characterization of local elastic properties in image-guided failure assessment of human trabecular bone. J. Biomech. Eng. 137, 011012. (doi:10.1115/1.4028991)
van der Linden JC, Birkenhäger-Frenkel DH, Verhaar JAN, Weinans H. 2001 Trabecular bone's mechanical properties are affected by its non-uniform mineral distribution. J. Biomech. 34, 1573-1580. (doi:10. 1016/S0021-9290(01)00146-4)
Renders GAP, Mulder L, van Ruijven LJ, Langenbach GEJ, van Eijden TMGJ. 2011 Mineral heterogeneity affects predictions of intratrabecular stress and strain. J. Biomech. 44, 402-407. (doi:10.1016/j. jbiomech.2010.10.004)
Hellmich C, Kober C, Erdmann B. 2007 Micromechanics-based conversion of CT data into anisotropic elasticity tensors, applied to FE simulations of a mandible. Ann. Biomed. Eng. 36, 108. (doi:10.1007/s10439-007-9393-8)
Hammond MA, Wallace JM, Allen MR, Siegmund T. 2018 Incorporating tissue anisotropy and heterogeneity in finite element models of trabecular bone altered predicted local stress distributions. Biomech. Model. Mechanobiol. 17, 605-614. (doi:10.1007/s10237-017-0981-8)
Steiner JA, Ferguson SJ, van Lenthe GH. 2015 Computational analysis of primary implant stability in trabecular bone. J. Biomech. 48, 807-815. (doi:10.1016/j.jbiomech. 2014.12.008)