Seidl, R.; University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, Wien, 1190, Austria
Hartig, F.; Theoretical Ecology, University of Regensburg, Universitätsstraße 31, Regensburg, 93053, Germany
Bohn, F.; Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, Institute of Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU) – Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
Brůna, J.; Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
Cailleret, M.; Forest Ecology, ETH Zürich, Universitätstrasse 22, Zürich, 8092, Switzerland, Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
François, Louis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Heinke, J.; Member of the Leibniz Association, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Henrot, Alexandra-Jane ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Modélisation du climat et des cycles biogéochimiques
Hickler, T.; Senckenberg Biodiversity and Climate Research Centre BiK-F, Frankfurt/Main, Germany, Department of Physical Geography, Goethe University, Frankfurt/Main, Germany
Hülsmann, L.; Theoretical Ecology, University of Regensburg, Universitätsstraße 31, Regensburg, 93053, Germany, Research Unit Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
Huth, A.; Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany, Institute for Environmental Systems Research, University of Osnabrück, Osnabrück, Germany, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
Jacquemin, Ingrid ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Eau, Environnement, Développement
Kollas, C.; Member of the Leibniz Association, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Lasch-Born, P.; Member of the Leibniz Association, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Lexer, M. J.; University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, Wien, 1190, Austria
Merganič, J.; Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, Zvolen, 96053, Slovakia
Merganičová, K.; Faculty of Forestry, Technical University in Zvolen, T.G. Masaryka 24, Zvolen, 96053, Slovakia
Mette, T.; Soil and Climate Department, Bavarian State Institute of Forestry (LWF), Freising, 85354, Germany
Miranda, B. R.; USDA Forest Service, Northern Research Station, Rhinelander, WI, United States
Nadal-Sala, D.; Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
Rammer, W.; University of Natural Resources and Life Sciences (BOKU) Vienna, Peter Jordan Straße 82, Wien, 1190, Austria
Rammig, A.; Member of the Leibniz Association, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
Reineking, B.; Irstea, LESSEM, Univ. Grenoble Alpes, Grenoble, 38000, France
Roedig, E.; Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
Sabaté, S.; Department de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain, CREAF, Campus de Bellaterra Edifici C, Cerdanyola del Vallès, 08193, Spain
Steinkamp, J.; Senckenberg Biodiversity and Climate Research Centre BiK-F, Frankfurt/Main, Germany
Suckow, F.; Member of the Leibniz Association, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Vacchiano, G.; Università degli Studi di Milano, DISAA, Milano, 20123, Italy
Wild, J.; Institute of Botany, The Czech Academy of Sciences, Průhonice, Czech Republic
Xu, C.; Los Alamos National Laboratory, Los Alamos, NM 87544, United States
Reyer, C. P. O.; Member of the Leibniz Association, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
Adams, H. D., M. Guardiola-Claramonte, G. A. Barron-Gafford, J. C. Villegas, D. D. Breshears, C. B. Zou, P. A. Troch, and T. E. Huxman. 2009. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences USA 106:7063–7066.
Allen, C. D., D. D. Breshears, and N. G. McDowell. 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6:129.
Allen, C. D., et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660–684.
Anderegg, W. R. L., et al. 2016. When a tree dies in the forest: scaling climate-driven tree mortality to ecosystem water and carbon fluxes. Ecosystems 19:1133–1147.
Augustynczik, A. L. D., F. Hartig, F. Minunno, H. P. Kahle, D. Diaconu, M. Hanewinkel, and R. Yousefpour. 2017. Productivity of Fagus sylvatica under climate change - A Bayesian analysis of risk and uncertainty using the model 3-PG. Forest Ecology and Management 401:192–206.
Bigler, C., O. U. Bräker, H. Bugmann, M. Dobbertin, and A. Rigling. 2006. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9:330–343.
Bigler, C., and T. T. Veblen. 2009. Increased early growth rates decrease longevities of conifers in subalpine forests. Oikos 118:1130–1138.
Bircher, N. 2015. To die or not to die: forest dynamics in Switzerland under climate change. Thesis No. 22775. ETH Zürich, Zürich, Switzerland.
Bircher, N., M. Cailleret, and H. Bugmann. 2015. The agony of choice: different empirical mortality models lead to sharply different future forest dynamics. Ecological Applications 25:1303–1318.
Bohn, F. J., K. Frank, and A. Huth. 2014. Of climate and its resulting tree growth: simulating the productivity of temperate forests. Ecological Modelling 278:9–17.
Bondeau, A., et al. 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology 13:679–706.
Botkin, D. B., J. F. Janak, and J. R. Wallis. 1972. Some ecological consequences of a computer model of forest growth. Journal of Ecology 60:849–872.
Brienen, R. J. W., et al. 2015. Long-term decline of the Amazon carbon sink. Nature 519:344–348.
Bugmann, H. 1996. A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074.
Bugmann, H. 2001. A review of forest gap models. Climatic Change 51:259–305.
Bugmann, H., and C. Bigler. 2011. Will the CO 2 fertilization effect in forests be offset by reduced tree longevity? Oecologia 165:533–544.
Bugmann, H. K. M., S. M. T. Yan Xiaodong, P. Martin, M. Lindner, P. V. Desanker, and S. G. Cumming. 1996. A comparison of forest gap models: model structure and behaviour. Climatic Change 34:289–313.
Clark, J. S., B. Beckage, P. Camill, B. Cleveland, J. HilleRisLambers, J. Lichter, J. McLachlan, J. Mohan, and P. Wyckoff. 1999. Interpreting recruitment limitation in forests. American Journal of Botany 86:1–16.
Cramer, W., et al. 2001. Global response of terrestrial ecosystem structure and function to CO 2 and climate change: results from six dynamic global vegetation models. Global Change Biology 7:357–373.
Dai, A. G. 2011. Drought under global warming: a review. Wiley Interdisciplinary Reviews-Climate Change 2:45–65.
Dury, M., A. Hambuckers, P. Warnant, A. Henrot, E. Favre, M. Ouberdous, and L. Francois. 2011. Responses of European forest ecosystems to 21st century climate: assessing changes in interannual variability and fire intensity. Iforest-Biogeosciences and Forestry 4:82–99.
Elkin, C., A. G. Gutierrez, S. Leuzinger, C. Manusch, C. Temperli, L. Rasche, and H. Bugmann. 2013. A 2°C warmer world is not safe for ecosystem services in the European Alps. Global Change Biology 19:1827–1840.
Fabrika, M. 2005. Simulátor biodynamiky lesa SIBYLA, koncepcia, konštrukcia a programové riešenie. Zvolen, Slovakia, Habilitačná práca, Technická univerzita vo Zvolene.
Fischer, R., et al. 2016. Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological Modelling 326:124–133.
Friend, A. D., et al. 2014. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America 111:3280–3285.
Grimm, V., E. Revilla, U. Berger, F. Jeltsch, W. M. Mooij, S. F. Railsback, H. H. Thulke, J. Weiner, T. Wiegand, and D. L. DeAngelis. 2005. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991.
Hartig, F., J. Dyke, T. Hickler, S. I. Higgins, R. B. O'Hara, S. Scheiter, and A. Huth. 2012. Connecting dynamic vegetation models to data - an inverse perspective. Journal of Biogeography 39:2240–2252.
He, H. S. 2008. Forest landscape models: definitions, characterization, and classification. Forest Ecology and Management 254:484–498.
Heiri, C., H. Bugmann, W. Tinner, O. Heiri, and H. Lischke. 2006. A model-based reconstruction of Holocene treeline dynamics in the Central Swiss Alps. Journal of Ecology 94:206–216.
Henne, P. D., C. M. Elkin, B. Reineking, H. Bugmann, and W. Tinner. 2011. Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. Journal of Biogeography 38:933–949.
Hickler, T., et al. 2012. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography 21:50–63.
Hlásny, T., Z. Barcza, I. Barka, K. Merganičová, R. Sedmák, A. Kern, J. Pajtík, B. Balázs, M. Fabrika, and G. Churkina. 2014. Future carbon cycle in mountain spruce forests of Central Europe: modelling framework and ecological inferences. Forest Ecology and Management 328:55–68.
Hülsmann, L., H. Bugmann, and P. Brang. 2017. How to predict tree death from inventory data – Lessons from a systematic assessment of European tree mortality models. Canadian Journal of Forest Research 47:890–900.
Hülsmann, L., H. Bugmann, M. Cailleret, and P. Brang. 2018. How to kill a tree – Empirical mortality models for eighteen species and their performance in a dynamic forest model. Ecological Applications 28:522–540.
IPCC. 2013. Climate Change 2013: the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
Irauschek, F., W. Rammer, and M. J. Lexer. 2017. Can current management maintain forest landscape multifunctionality in the Eastern Alps in Austria under climate change? Regional Environmental Change 17:33–48.
Keane, R. E., M. Austin, C. Field, A. Huth, M. J. Lexer, D. Peters, A. Solomon, and P. Wyckoff. 2001. Tree mortality in gap models: application to climate change. Climatic Change 51:509–540.
Keane, R. E., D. McKenzie, D. A. Falk, E. A. H. Smithwick, C. Miller, and L.-K. B. Kellogg. 2015. Representing climate, disturbance, and vegetation interactions in landscape models. Ecological Modelling 309–310:33–47.
Lasch-Born, P., F. Suckow, M. Gutsch, C. Reyer, Y. Hauf, A. Murawski, and T. Pilz. 2015. Forests under climate change: potential risks and opportunities. Meteorologische Zeitschrift 24:157–172.
Lexer, M. J., and K. Hönninger. 2001. A modified 3D-patch model for spatially explicit simulation of vegetation composition in heterogeneous landscapes. Forest Ecology and Management 144:43–65.
Lischke, H., A. Lotter, and A. Fischlin. 1999. Untangling a post-glacial pollen record with forest model simulations and independent climate data. Ecological Modelling 150:1–21.
Liu, J., and P. S. Ashton. 1995. Individual-based simulation models for forest succession and management. Forest Ecology and Management 73:157–175.
Lloret, F., A. Escudero, J. M. Iriondo, J. Martinez-Vilalta, and F. Valladares. 2012. Extreme climatic events and vegetation: the role of stabilizing processes. Global Change Biology 18:797–805.
Manusch, C., H. Bugmann, C. Heiri, and A. Wolf. 2012. Tree mortality in dynamic vegetation models – A key feature for accurately simulating forest properties. Ecological Modelling 243:101–111.
Martinez-Vilalta, J., and F. Lloret. 2016. Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Global and Planetary Change 144:94–108.
McDowell, N. G., D. J. Beerling, D. D. Breshears, R. A. Fisher, K. F. Raffa, and M. Stitt. 2011. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends in Ecology & Evolution 26:523–532.
McDowell, N. G., et al. 2013. Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytologist 200:304–321.
McDowell, N. G., et al. 2016. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nature Climate Change 6:1048–1048.
Mette, T. 2014. Modelling Patagonian Lenga-forest dynamics (Nothofagus pumilio) in Chile. Final report, DFG project ME 3568/2-1, Bonn, Germany.
Mette, T., A. Albrecht, C. Ammer, P. Biber, U. Kohnle, and H. Pretzsch. 2009. Evaluation of the forest growth simulator SILVA on dominant trees in mature mixed Silver fir–Norway spruce stands in South-West Germany. Ecological Modelling 220:1670–1680.
Monserud, R. A., and H. Sterba. 1999. Modeling individual tree mortality for Austrian forest species. Forest Ecology and Management 113:109–123.
Moorcroft, P. R., G. C. Hurtt, and S. W. Pacala. 2001. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecological Monographs 71:557–585.
Morales, P., et al. 2005. Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Global Change Biology 11:2211–2233.
Nadal-Sala, D., T. F. Keenan, S. Sabaté, and C. Gracia. 2017. Forest eco-physiological models: water use and carbon sequestration. Pages 81–102 in F. Bravo, V. LeMay, and R. Jandl, editors. Managing forest ecosystems: the challenge of climate change. Springer, Berlin, Germany.
Neumann, M., V. Nues, A. Moreno, H. Hasenauer, and R. Seidl. 2017. Climate variability drives recent tree mortality in Europe. Global Change Biology 23:4788–4797.
Peters, G. P., R. M. Andrew, T. Boden, J. G. Canadell, P. Ciais, C. Le Quere, G. Marland, M. R. Raupach, and C. Wilson. 2013. The challenge to keep global warming below 2°C. Nature Climate Change 3:4–6.
Piao, S. L., et al. 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO 2 trends. Global Change Biology 19:2117–2132.
Pretzsch, H. 2009. Forest dynamics, growth and yield. Springer, Berlin, Germany.
Pretzsch, H., P. Biber, and J. Dursky. 2002. The single tree-based stand simulator SILVA: construction, application and evaluation. Forest Ecology and Management 162:3–21.
R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rasche, L., L. Fahse, and H. Bugmann. 2013. Key factors affecting the future provision of tree-based forest ecosystem goods and services. Climatic Change 118:579–593.
Reyer, C., P. Lasch-Born, F. Suckow, M. Gutsch, A. Murawski, and T. Pilz. 2014. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Annals of Forest Science 71:211–225.
Reyer, C. P. O., et al. 2015. Forest resilience and tipping points at different spatio-temporal scales: approaches and challenges. Journal of Ecology 103:5–15.
Schaphoff, S., U. Heyder, S. Ostberg, D. Gerten, J. Heinke, and W. Lucht. 2013. Contribution of permafrost soils to the global carbon budget. Environmental Research Letters 8:014026.
Scheffer, M. 2010. Complex systems: foreseeing tipping points. Nature 467:411–412.
Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413:591–596.
Scheller, R. M., and D. J. Mladenoff. 2004. A forest growth and biomass module for a landscape simulation model, LANDIS: design, validation, and application. Ecological Modelling 180:211–229.
Schumacher, S., B. Reineking, J. Sibold, and H. Bugmann. 2006. Modeling the impact of climate and vegetation on fire regimes in mountain landscapes. Landscape Ecology 21:539–554.
Seidl, R., and W. Rammer. 2017. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landscape Ecology 32:1485–1498.
Seidl, R., W. Rammer, and M. J. Lexer. 2011. Adaptation options to reduce climate change vulnerability of sustainable forest management in the Austrian Alps. Canadian Journal of Forest Research 41:694–706.
Seidl, R., W. Rammer, R. M. Scheller, and T. A. Spies. 2012. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecological Modelling 231:87–100.
Seidl, R., M. J. Schelhaas, W. Rammer, and P. J. Verkerk. 2014. Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change 4:806–810.
Seidl, R., et al. 2017. Forest disturbances under climate change. Nature Climate Change 7:395–402.
Settele, J., et al. 2014. Terrestrial and inland water systems. Pages 271–359 in C. B. Field, et al., editors. Climate Change 2014: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, New York, USA.
Shugart, H. H. 1984. A theory of forest dynamics. The ecological implications of forest succession models. Springer, New York, New York, USA.
Sitch, S., et al. 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 14:2015–2039.
Smith, B., D. Warlind, A. Arneth, T. Hickler, P. Leadley, J. Siltberg, and S. Zaehle. 2014. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11:2027–2054.
Solomon, A. M. 1986. Transient response of forests to CO 2 -induced climate change: simulation modeling experiments in eastern North America. Oecologia 68:567–579.
Steinkamp, J., and T. Hickler. 2015. Is drought-induced forest dieback globally increasing? Journal of Ecology 103:31–43.
Temperli, C., H. Bugmann, and C. Elkin. 2013a. Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecological Monographs 83:383–402.
Temperli, C., J. Zell, H. Bugmann, and C. Elkin. 2013b. Sensitivity of ecosystem goods and services projections of a forest landscape model to initialization data. Landscape Ecology 28:1337–1352.
Warnant, P., L. Francois, D. Strivay, and J. C. Gerard. 1994. CARAIB - a global model of terrestrial biological productivity. Global Biogeochemical Cycles 8:255–270.
Warszawski, L., K. Frieler, V. Huber, F. Piontek, O. Serdeczny, and J. Schewe. 2014. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework. Proceedings of the National Academy of Sciences of the United States of America 111:3228–3232.
Williams, A. P., et al. 2013. Temperature as a potent driver of regional forest drought stress and tree mortality. Nature Climate Change 3:292–297.
Wykoff, W. R., N. L. Crookston, and A. R. Stage. 1982. User's guide to the Stand Prognosis Model. Gen. Tech. Rep. INT-133. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah, USA.
Yoda, K., T. Kira, H. Ogawa, and K. Hozumi. 1963. Self-thinning in over-crowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants XI). Journal of the Institute of Polytechnics, Osaka City University, Series D 14:107–129.