NOTICE: this is the author’s version of a work that was accepted for publication in Composite Structures. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Composite Structures 220, 2019, 64-80, doi:10.1016/j.compstruct.2019.03.066
All documents in ORBi are protected by a user license.
[en] We present a stochastic approach combining Bayesian Inference (BI) with homogenization theories in order to identify, on the one hand, the parameters inherent to the model assumptions
and, on the other hand, the composite material constituents behaviors, including their variability.
In particular, we characterize the model parameters of a Mean-Field Homogenization (MFH) model and the elastic matrix behavior, including the inherent dispersion in its Young's modulus, of non-aligned Short Fibers Reinforced Polymer (SFRP) composites. The inference is achieved by considering as observations experimental tests conducted at the SFRP composite coupons level.
The inferred model and material law parameters can in turn be used in Mean-Field Homogenization
(MFH)-based multi-scale simulations and can predict the confidence range of the composite
material responses.
H2020 - 685451 - M-ERA.NET 2 - ERA-NET for materials research and innovation
Name of the research project :
The research has been funded by the Walloon Region under the agreement no 1410246 - STOMMMAC (CT-INT2013-03-28) in the context of the M-ERA.NET Joint Call 2014.
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 CE - Commission Européenne
Kanouté, P., Boso, D., Chaboche, J., Schrefler, B., Multiscale methods for composites: a review (2009) Arch Comput Methods Eng, 16, pp. 31-75. , ISSN
Noels, L., Wu, L., Adam, L., Review of Homogenization Methods for Heterogeneous Materials (2016) Handbook of Software Solutions for ICME, chap. 6.1.1, pp. 433-441. , P. Ulrich G.J. Schmitz Wiley-VCH,Weinheim Germany ISBN
Matous, K., Geers, M.G., Kouznetsova, V.G., Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials (2017) J Comput Phys, 330, pp. 192-220. , ISSN
Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems (1957) Proc R Soc London. Ser A, Math Phys Sci, 241 (1226), pp. 376-396. , ISSN
Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions (1973) Acta Metallurgica, 21 (5), pp. 571-574. , cited By (since 1996) 1814
Benveniste, Y., A new approach to the application of Mori-Tanaka's theory in composite materials (1987) Mech Mater, 6 (2), pp. 147-157. , ISSN
Kröner, E., Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls (1958) Zeitschrift für Physik A Hadrons and Nuclei, 151, pp. 504-518. , ISSN
Hill, R., A self-consistent mechanics of composite materials (1965) J Mech Phys Solids, 13 (4), pp. 213-222. , ISSN
Hill, R., Continuum micro-mechanics of elastoplastic polycrystals (1965) J Mech Phys Solids, 13 (2), pp. 89-101. , ISSN
Talbot, D.R.S., Willis, J.R., Variational principles for inhomogeneous non-linear media (1985) IMA J Appl Math, 35 (1), pp. 39-54
Wu, L., Noels, L., Adam, L., Doghri, I., A combined incremental-secant mean-field homogenization scheme with per-phase residual strains for elasto-plastic composites (2013) Int J Plast, 51, pp. 80-102
Camacho, C.W., Tucker, C.L., Yalva c, S., McGee, R.L., Stiffness and thermal expansion predictions for hybrid short fiber composites, Polymer (1990) Composites, 11 (4), pp. 229-239. , ISSN
Doghri, I., Tinel, L., Micromechanical modeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers (2005) Int J Plasticity, 21 (10), pp. 1919-1940. , http://www.sciencedirect.com/science/article/pii/S0749641904001706, ISSN, URL:
Doghri, I., Tinel, L., Micromechanics of inelastic composites with misaligned inclusions: numerical treatment of orientation (2006) Comput Methods Appl Mech Eng, 195 (13), pp. 1387-1406. , http://www.sciencedirect.com/science/article/pii/S0045782505002872, ISSN. URL: a Tribute to Thomas J.R. Hughes on the Occasion of his 60th Birthday
Clarke, A.R., Eberhardt, C.N., Microscopy Techniques for Materials Science, Woodhead Publishing Series in Electronic and Optical Materials (2002), http://www.sciencedirect.com/science/article/pii/B9781855735873500015, Woodhead Publishing ISBN, URL:
Vincent, M., Giroud, T., Clarke, A., Eberhardt, C., Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics (2005) Polymer, 46 (17), pp. 6719-6725. , http://www.sciencedirect.com/science/article/pii/S0032386105005598, ISSN, URL: polymer Blends, Composites and Hybrid Polymeric Materials
Gupta, M., Wang, K.K., Fiber orientation and mechanical properties of short-fiber-reinforced injection-molded composites: Simulated and experimental results (1993) Polym Compos, 14 (5), pp. 367-382. , https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.750140503, URL:
Nouri, H., (2009), https://pastel.archives-ouvertes.fr/pastel-00005669/document, Modélisation et identification de lois de comportement avec endommagement en fatigue polycyclique de matriaux composite à matrice thermoplastique, Ph.D. thesis, Arts et Métiers ParisTech, Metz (France) URL:
Elster, C., Wübbeler, G., Bayesian regression versus application of least squares-an example (2016) Metrologia, 53 (1), p. S10. , http://stacks.iop.org/0026-1394/53/i=1/a=S10, URL:
Beck, J.L., Katafygiotis, L.S., Updating models and their uncertainties. I: Bayesian statistical framework (1998) J Eng Mech, 124, pp. 455-461. , https://ascelibrary.org/doi/pdf/10.1061, URL:
(1979), Progressing from least squares to Bayesian estimation, New York, USA
Lai, T.C., Ip, K., Parameter estimation of orthotropic plates by Bayesian sensitivity analysis (1996) Compos Struct, 34 (1), pp. 29-42. , ISSN
Daghia, F., de Miranda, S., Ubertini, F., Viola, E., Estimation of elastic constants of thick laminated plates within a Bayesian framework (2007) Compos Struct, 80 (3), pp. 461-473. , http://www.sciencedirect.com/science/article/pii/S0263822306002789, ISSN, URL:
Gogu, C., Yin, W., Haftka, R., Ifju, P., Molimard, J., Le Riche, R., Vautrin, A., Bayesian identification of elastic constants in multi-directional laminate from Moiré interferometry displacement fields (2013) Exp Mech, 53 (4), pp. 635-648. , ISSN
Most, T., Identification of the parameters of complex constitutive models: Least squares minimization vs. Bayesian updating (2010) Reliability and Optimization of Structural Systems, , D. Straub CRC Press
Rappel, H., Beex, L., Noels, L., Bordas, S., Identifying elastoplastic parameters with Bayest́heorem considering output error, input error and model uncertainty (2019) Probabilistic Eng Mech, 55, pp. 28-41. , http://www.sciencedirect.com/science/article/pii/S0266892018300547, ISSN, URL:
Rappel, H., Beex, L., Hale, J., Noels, L., Bordas, S., A tutorial on Bayesian inference to identify material parameters in solid mechanics (2019) Arch Comput Methods Eng, , ISSN
Hernandez, W., Borges, F., Castello, D., Roitman, N., Magluta, C., Bayesian inference applied on model calibration of a fractional derivative viscoelastic model (2015) DINAME 2015 – Proceedings of the XVII International Symposium on Dynamic Problems of Mechanics, , https://ssl4799.websiteseguro.com/swge5/PDF/DIN20150123_17225PDF, ISBN, URL:
Rappel, H., Beex, L.A.A., Bordas, S.P.A., Bayesian inference to identify parameters in viscoelasticity (2018) Mech Time-Dependent Mater, 22 (2), pp. 221-258. , ISSN
Madireddy, S., Sista, B., Vemaganti, K., A Bayesian approach to selecting hyperelastic constitutive models of soft tissue (2015) Computer Methods Appl Mech Eng, 291, pp. 102-122. , http://www.sciencedirect.com/science/article/pii/S004578251500122X, ISSN, URL:
Koutsourelakis, P.-S., A novel Bayesian strategy for the identification of spatially varying material properties and model validation: an application to static elastography (2012) Int J Numer Meth Eng, 91 (3), pp. 249-268
Ghanem, R.G., Doostan, A., On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data (2006) J Comput Phys, 217 (1), pp. 63-81. , http://www.sciencedirect.com/science/article/pii/S0021999106000386, ISSN, URL:
uncertainty Quantification in Simulation Science
Arnst, M., Ghanem, R., Soize, C., Identification of Bayesian posteriors for coefficients of chaos expansions (2010) J Comput Phys, 229 (9), pp. 3134-3154. , http://www.sciencedirect.com/science/article/pii/S0021999109007190, ISSN, 10.1016/j.jcp.2009.12.033, URL:
Rappel, H., Beex, L., Estimating fibres material parameter distributions from limited data with the help of Bayesian inference (2019) Eur J Mech – A/Solids, 75, pp. 169-196. , http://www.sciencedirect.com/science/article/pii/S0997753818305916, ISSN, URL:
Weber, B., Kenmeugne, B., Clement, J., Robert, J., Improvements of multiaxial fatigue criteria computation for a strong reduction of calculation duration (1999) Comput Mater Sci, 15 (4), pp. 381-399. , http://www.sciencedirect.com/science/article/pii/S0927025698001293, ISSN, URL:
Benveniste, Y., Dvorak, G., Chen, T., On diagonal and elastic symmetry of the approximate effective stiffness tensor of heterogeneous media (1991) J Mech Phys Solids, 39 (7), pp. 927-946. , http://www.sciencedirect.com/science/article/pii/002250969190012D, ISSN, URL:
Onat, E., Leckie, F., Representation of mechanical behavior in the presence of changing internal structure (1988) J Appl Mech, 55 (1), pp. 1-10
(2003), Akulon-General information on applications, processing and properties, Tech. Rep., DSM Engineering Plastics
Soons, J.A.M., de Baere, I., Dirckx, J.J.J., New double indentation technique for measurement of the elasticity modulus of thin objects (2011) Exp Mech, 51 (1), pp. 85-95. , ISSN
Haario, H., Saksman, E., Tamminen, J., Adaptive proposal distribution for random walk Metropolis algorithm (1999) Comput Stat, 14 (3), pp. 375-395. , ISSN
Gilks, W., Richardson, S., Spiegelhalter, D., Markov chain Monte Carlo in practice (1995) Chapman & Hall/CRC Interdisciplinary Statistic, , Chapman, Hall/CRC CRC Press Weinheim, Germany ISBN
Hand, G.L., A theory of anisotropic fluids (1962) J Fluid Mech, 13 (1), pp. 33-46
Hinch, E.J., Leal, L.G., Constitutive equations in suspension mechanics. Part 1. General formulation (1975) J Fluid Mech, 71 (3), pp. 481-495
Advani, S.G., Tucker, C.L., III, Closure approximations for three-dimensional structure tensors (1990) J Rheol, 34 (3), pp. 367-386