Roose, E.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Vidarsson, G.; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
Kangro, K.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Verhagen, O. J. H. M.; Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
Mancini, I.; Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione Luigi Villa, Milan, Italy
Desender, L.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Pareyn, I.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Vandeputte, N.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Vandenbulcke, A.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Vendramin, C.; Department of Haematology, University College London Hospital, London, United Kingdom
Schelpe, A.-S.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Voorberg, J.; Department of Plasma Proteins, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
Azerad, Marie-Agnès ; CHU Brugmann Bruxelles Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service d'hématologie clinique
Gilardin, L.; Département de Médicine Interne et Immunologie Clinique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
Scully, M.; Department of Haematology, University College London Hospital, London, United Kingdom
Dierickx, D.; Department of Hematology, University Hospitals Leuven, Leuven, Belgium
Deckmyn, H.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
De Meyer, S. F.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Peyvandi, F.; Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Fondazione Luigi Villa, Milan, Italy, Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico, Milan, Italy
Vanhoorelbeke, K.; Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijkc, B-8500, Belgium
Zheng X. Chung D. Takayama T. K. Majerus E. M. Sadler J. E. Fujikawa K. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem: 2001; 276 44 41059 41063
Tsai H. M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood: 1996; 87 10 4235 4244
Furlan M. Robles R. Lämmle B. Partial purification and characterization of a protease from human plasma cleaving von Willebrand factor to fragments produced by in vivo proteolysis. Blood: 1996; 87 10 4223 4234
Ostertag E. M. Kacir S. Thiboutot M., et al. ADAMTS13 autoantibodies cloned from patients with acquired thrombotic thrombocytopenic purpura: 1. Structural and functional characterization in vitro. Transfusion: 2016; 56 07 1763 1774
Schaller M. Vogel M. Kentouche K. Lämmle B. Kremer Hovinga J. A. The splenic autoimmune response to ADAMTS13 in thrombotic thrombocytopenic purpura contains recurrent antigen-binding CDR3 motifs. Blood: 2014; 124 23 3469 3479
Pos W. Luken B. M. Kremer Hovinga J. A., et al. VH1-69 germline encoded antibodies directed towards ADAMTS13 in patients with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost: 2009; 7 03 421 428
Luken B. M. Kaijen P. HP. Turenhout E. AM., et al. Multiple B-cell clones producing antibodies directed to the spacer and disintegrin/thrombospondin type-1 repeat 1 (TSP1) of ADAMTS13 in a patient with acquired thrombotic thrombocytopenic purpura. J Thromb Haemost: 2006; 4 11 2355 2364
Foreman A. L. Van de Water J. Gougeon M. L. Gershwin M. E. B cells in autoimmune diseases: insights from analyses of immunoglobulin variable (Ig V) gene usage. Autoimmun Rev: 2007; 6 06 387 401
Siegel D. L. Translational applications of antibody phage display. Immunol Res: 2008; 42 (1-3): 118 131
Schaller M. Studt J. D. Voorberg J. Kremer Hovinga J. A. Acquired thrombotic thrombocytopenic purpura. Development of an autoimmune response. Hamostaseologie: 2013; 33 02 121 130
Klaus C. Plaimauer B. Studt J. D., et al. Epitope mapping of ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. Blood: 2004; 103 12 4514 4519
Zheng X. L. Wu H. M. Shang D., et al. Multiple domains of ADAMTS13 are targeted by autoantibodies against ADAMTS13 in patients with acquired idiopathic thrombotic thrombocytopenic purpura. Haematologica: 2010; 95 09 1555 1562
Luken B. M. Turenhout E. A. Hulstein J. JJ. Van Mourik J. A. Fijnheer R. Voorberg J. The spacer domain of ADAMTS13 contains a major binding site for antibodies in patients with thrombotic thrombocytopenic purpura. Thromb Haemost: 2005; 93 02 267 274
Pos W. Sorvillo N. Fijnheer R., et al. Residues Arg568 and Phe592 contribute to an antigenic surface for anti-ADAMTS13 antibodies in the spacer domain. Haematologica: 2011; 96 11 1670 1677
Luken B. M. Turenhout E. A. Kaijen P. HP., et al. Amino acid regions 572-579 and 657-666 of the spacer domain of ADAMTS13 provide a common antigenic core required for binding of antibodies in patients with acquired TTP. Thromb Haemost: 2006; 96 03 295 301
Pos W. Crawley J. TB. Fijnheer R. Voorberg J. Lane D. A. Luken B. M. An autoantibody epitope comprising residues R660, Y661, and Y665 in the ADAMTS13 spacer domain identifies a binding site for the A2 domain of VWF. Blood: 2010; 115 08 1640 1649
Soejima K. Matsumoto M. Kokame K., et al. ADAMTS-13 cysteine-rich/spacer domains are functionally essential for von Willebrand factor cleavage. Blood: 2003; 102 09 3232 3237
Thomas M. R. de Groot R. Scully M. A. Crawley J. TB. Pathogenicity of anti-ADAMTS13 autoantibodies in acquired thrombotic thrombocytopenic purpura. EBioMedicine: 2015; 2 08 942 952
Muia J. Zhu J. Gupta G., et al. Allosteric activation of ADAMTS13 by von Willebrand factor. Proc Natl Acad Sci U S A: 2014; 111 52 18584 18589
South K. Luken B. M. Crawley J. TB., et al. Conformational activation of ADAMTS13. Proc Natl Acad Sci U S A: 2014; 111 52 18578 18583
Deforche L. Roose E. Vandenbulcke A., et al. Linker regions and flexibility around the metalloprotease domain account for conformational activation of ADAMTS-13. J Thromb Haemost: 2015; 13 11 2063 2075
Roose E. Schelpe A-S. Joly B. S., et al. An open conformation of ADAMTS-13 is a hallmark of acute acquired thrombotic thrombocytopenic purpura. J Thromb Haemost: 2018; 16 02 378 388
Dohmen S. E. Mulder A. Verhagen O. JHM. Eijsink C. Franke-van Dijk M. EI. van der Schoot C. E. Production of recombinant Ig molecules from antigen-selected single B cells and restricted usage of Ig-gene segments by anti-D antibodies. J Immunol Methods: 2005; 298 (1-2): 9 20
Feys H. B. Roodt J. Vandeputte N., et al. Thrombotic thrombocytopenic purpura directly linked with ADAMTS13 inhibition in the baboon (Papio ursinus). Blood: 2010; 116 12 2005 2010
Feys H. B. Canciani M. T. Peyvandi F. Deckmyn H. Vanhoorelbeke K. Mannucci P. M. ADAMTS13 activity to antigen ratio in physiological and pathological conditions associated with an increased risk of thrombosis. Br J Haematol: 2007; 138 04 534 540
Feys H. B. Vandeputte N. Palla R., et al. Inactivation of ADAMTS13 by plasmin as a potential cause of thrombotic thrombocytopenic purpura. J Thromb Haemost: 2010; 8 09 2053 2062
Feys H. B. Anderson P. J. Vanhoorelbeke K. Majerus E. M. Sadler J. E. Multi-step binding of ADAMTS-13 to von Willebrand factor. J Thromb Haemost: 2009; 7 12 2088 2095
Lotta L. A. Valsecchi C. Pontiggia S., et al. Measurement and prevalence of circulating ADAMTS13-specific immune complexes in autoimmune thrombotic thrombocytopenic purpura. J Thromb Haemost: 2014; 12 03 329 336
Mancini I. Ferrari B. Valsecchi C., et al. Italian Group of TTP Investigators. ADAMTS13-specific circulating immune complexes as potential predictors of relapse in patients with acquired thrombotic thrombocytopenic purpura. Eur J Intern Med: 2017; 39 79 83
Mulder A. Kardol M. J. Kamp J., et al. Determination of the frequency of HLA antibody secreting B-lymphocytes in alloantigen sensitized individuals. Clin Exp Immunol: 2001; 124 01 9 15
Della Valle L. Dohmen S. E. Verhagen O. JHM. Berkowska M. A. Vidarsson G. Ellen van der Schoot C. The majority of human memory B cells recognizing RhD and tetanus resides in IgM+ B cells. J Immunol: 2014; 193 03 1071 1079
Fath S. Bauer A. P. Liss M., et al. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One: 2011; 6 03 e17596
Raab D. Graf M. Notka F. Schödl T. Wagner R. The GeneOptimizer Algorithm: using a sliding window approach to cope with the vast sequence space in multiparameter DNA sequence optimization. Syst Synth Biol: 2010; 4 03 215 225
Gustafsson C. Govindarajan S. Minshull J. Codon bias and heterologous protein expression. Trends Biotechnol: 2004; 22 07 346 353
Plotkin J. B. Robins H. Levine A. J. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci U S A: 2004; 101 34 12588 12591
Vink T. Oudshoorn-Dickmann M. Roza M. Reitsma J. J. de Jong R. N. A simple, robust and highly efficient transient expression system for producing antibodies. Methods: 2014; 65 01 5 10
Kokame K. Nobe Y. Kokubo Y. Okayama A. Miyata T. FRETS-VWF73, a first fluorogenic substrate for ADAMTS13 assay. Br J Haematol: 2005; 129 01 93 100
Rojas O. L. Narváez C. F. Greenberg H. B. Angel J. Franco M. A. Characterization of rotavirus specific B cells and their relation with serological memory. Virology: 2008; 380 02 234 242
Ferrari S. Scheiflinger F. Rieger M., et al. French Clinical and Biological Network on Adult Thrombotic Microangiopathies. Prognostic value of anti-ADAMTS 13 antibody features (Ig isotype, titer, and inhibitory effect) in a cohort of 35 adult French patients undergoing a first episode of thrombotic microangiopathy with undetectable ADAMTS 13 activity. Blood: 2007; 109 07 2815 2822
Rieger M. Mannucci P. M. Kremer Hovinga J. A., et al. ADAMTS13 autoantibodies in patients with thrombotic microangiopathies and other immunomediated diseases. Blood: 2005; 106 04 1262 1267
Majerus E. M. Anderson P. J. Sadler J. E. Binding of ADAMTS13 to von Willebrand factor. J Biol Chem: 2005; 280 23 21773 21778
Dogan I. Bertocci B. Vilmont V., et al. Multiple layers of B cell memory with different effector functions. Nat Immunol: 2009; 10 12 1292 1299
Froehlich-Zahnd R. George J. N. Vesely S. K., et al. Evidence for a role of anti-ADAMTS13 autoantibodies despite normal ADAMTS13 activity in recurrent thrombotic thrombocytopenic purpura. Haematologica: 2012; 97 02 297 303
Underwood M. I. Thomas M. R. Scully M. A. Crawley J. TB. Autoantibodies binding to open and closed ADAMTS13 in patients with acquired immune thrombotic thrombocytopenic purpura. RPTH: 2017; 1 01 255
Alwan F. Vendramin C. Vanhoorelbeke K., et al. Presenting ADAMTS13 antibody and antigen levels predict prognosis in immune-mediated thrombotic thrombocytopenic purpura. Blood: 2017; 130 04 466 471