[en] Bacillus velezensisstrains, belonging to plant growth-promoting rhizobacteria (PGPR), areincreasingly used as microbial biostimulant. However, their field application to winter wheatunder temperate climate remains poorly documented. Therefore, threeB. velezensisstrainsIT45, FZB24 and FZB42 were tested for their efficacy under these conditions. Two biological in-teraction systems were firstly developed under gnotobiotic and greenhouse conditions combinedwith sterile or non-sterile soil, respectively, and finally assayed in the field during two yearscoupled with different N fertilization rates. Under gnotobiotic conditions, all three strains signifi-cantly increased root growth of 14 d-old spring and winter wheat seedlings. In the greenhouseusing non-sterile soil, only FZB24 significantly increased root biomass of spring wheat (+31%).The three strains were able to improve nutrient uptake of the spring wheat grown in the green-house, particularly for the micronutrients Fe, Mn, Zn, and Cu, but the observed increases innutrient uptake were dependent on the organs and the elements. The root biomass increases ininoculated plants coincided with lowered nutrient concentrations of P and K. In 2014, under fieldconditions and absence of any N fertilizer supply, FZB24 significantly increased grain yields by983 kg ha–1, or 14.9%, in relation to non-inoculated controls. The three strains in the 2015 fieldtrial failed to confirm the previous positive results, likely due to the low temperatures occurringduring and after inoculations. The Zeleny sedimentation value, indicative of flour quality, wasunaffected by the inoculants. The results are discussed in the perspective of bacterial applicationto wheat under temperate agricultural practices
Spaepen, Stijn; Katholieke Universiteit Leuven - KUL
Bodson, Bernard ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
du Jardin, Patrick ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Delaplace, Pierre ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions végétales et valorisation
Language :
English
Title :
Biostimulant Effects of Bacillus strains on wheat from in vitro towards field conditions are modulated by nitrogen supply
Adesemoye, A. O, Kloepper, J. W. (2009): Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl. Microbiol. Biotechnol. 85, 1–12.
Alori, E. T, Glick, B. R, Babalola, O. O. (2017): Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 8. DOI: https://doi.org/10.3389/fmicb.2017.00971.
Bashan, Y, de-Bashan, L. E, Prabhu, S. R, Hernandez, J.-P. (2014): Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378, 1–33.
Berendsen, E. M, Koning, R. A, Boekhorst, J, de Jong, A, Kuipers, O. P, Wells-Bennik, M. H. J. (2016): High-level heat resistance of spores of Bacillus amyloliquefaciens and Bacillus licheniformis results from the presence of a spoVA operon in a Tn1546 transposon. Front. Microbiol. 7. DOI: https://doi.org/10.3389/fmicb.2016.01912.
Çakmakçı, R, Turan, M, Güllüce, M, Şahin, F. (2014): Rhizobacteria for reduced fertilizer inputs in wheat (Triticum aestivum spp. vulgare) and barley (Hordeum vulgare) on Aridisols in Turkey. Int. J. Plant Prod. 8, 163–182.
Chowdhury, S. P, Dietel, K, Rändler, M, Schmid, M, Junge, H, Borriss, R, Hartmann, A, Grosch, R. (2013): Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. PLoS ONE 8. DOI: https://doi.org/10.1371/journal.pone.0068818.
da Silva Araújo, A. E, Baldani, V. L. D, de Souza Galisa, P, Pereira, J. A, Baldani, J. A. (2013): Response of traditional upland rice varieties to inoculation with selected diazotrophic bacteria isolated from rice cropped at the Northeast region of Brazil. Appl. Soil Ecol. 64, 49–55.
de Freitas, J. R, Germida, J. J. (1992): Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biol. Biochem. 24, 1137–1146.
Dobbelaere, S, Croonenborghs, A, Thys, A, Broek, A. V, Vanderleyden, J. (1999): Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212, 153–162.
Dobbelaere, S, Croonenborghs, A, Thys, A, Ptacek, D, Okon, Y, Vanderleyden, J. (2002): Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biol. Fertil. Soils 36, 284–297.
Dobbelaere, S, Croonenborghs, A, Thys, A, Ptacek, D, Vanderleyden, J, Dutto, P, Labandera-Gonzalez, C, Caballero-Mellado, J, Aguirre, J. F, Kapulnik, Y, Brener, S, Burdman, S, Kadouri, D, Sarig, S, Okon, Y. (2001): Responses of agronomically important crops to inoculation with Azospirillum. Funct. Plant Biol. 28, 871–879.
du Jardin, P. (2015): Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196, 3–14.
Duca, D, Lorv, J, Patten, C. L, Rose, D, Glick, B. R. (2014): Indole-3-acetic acid in plant–microbe interactions. Anton. Van Lee. 106, 85–125.
Dunlap, C. A, Kim, S.-J, Kwon, S.-W, Rooney, A. P. (2016): Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66, 1212–1217.
Egamberdieva, D. (2010): Growth response of wheat cultivars to bacterial inoculation in calcareous soil. Plant Soil Environ. 56, 570–573.
Fan, B, Blom, J, Klenk, H.-P, Borriss, R. (2017): Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex. Front. Microbiol. 8. DOI: https://doi.org/10.3389/fmicb.2017.00022.
FAO (2012): Top 10 wheat yield. FAO, Rome, Italy. Available at: http://ref.data.fao.org/measure?entryId=963c5652-0063-47ad-9ad5-1e78a875d036 (last accessed March 07, 2017).
Germida, J. J, Walley, F. L. (1996): Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol. Fertil. Soils 23, 113–120.
Gfeller, A, Laloux, M, Barsics, F, Kati, D. E, Haubruge, E, du Jardin, P, Verheggen, F. J, Lognay, G, Wathelet, J.-P, Fauconnier, M.-L. (2013): Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J. Chem. Ecol. 39, 1129–1139.
Hungria, M, Campo, R. J, Souza, E. M, Pedrosa, F. O. (2010): Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil 331, 413–425.
Hussain, M, Asgher, Z, Tahir, M, Ijaz, M, Shahid, M, Ali, H, Sattar, A. (2016): Bacteria in combination with fertilizers improve growth, productivity and net returns of wheat (Triticum aestivum L.). Pak. J. Agric. Sci. 53, 633–645.
Idris, E. E, Bochow, H, Ross, H, Borriss, R. (2004): Use of Bacillus subtilis as biocontrol agent. VI. Phytohormonelike action of culture filtrates prepared from plant growth-promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. J. Plant Dis. Prot. 111, 583–597.
Idris, E. E, Iglesias, D. J, Talon, M, Borriss, R. (2007): Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant Microbe Interact. 20, 619–626.
Le Mire, G, Nguyen, M. L, Fassotte, B, du Jardin, P, Verheggen, F, Delaplace, P, Haissam Jijakli, M. (2016): Review: implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems. Biotechnol. Agron. Soc. Env. 20, 299–313.
Milošević, N, Tintor, P, Protić, R, Cvijanović, G, Dimitrijević, T. (2012): Effect of inoculation with Azotobacter chroococcum on wheat yield and seed quality. Romanian Biotechnol. Lett. 17, 7352–7357.
Mohite, B. (2013): Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 13, 638–649.
Narula, N, Kumar, V, Singh, B, Bhatia, R, Lakshminarayana, K. (2005): Impact of biofertilizers on grain yield in spring wheat under varying fertility conditions and wheat-cotton rotation. Arch. Agron. Soil Sci. 51, 79–89.
Nguyen, M. L, Spaepen, S, du Jardin, P, Delaplace, P. (2019): Biostimulant effects of rhizobacteria on wheat growth and nutrient uptake depend on nitrogen application and plant development. Arch. Agron. Soil Sci. 65, 58–73.
Ogut, M, Er, F. (2016): Mineral composition of field grown winter wheat inoculated with phosphorus solubilizing bacteria at different plant growth stages. J. Plant Nutr. 39, 479–490.
Ozturk, A, Caglar, O, Sahin, F. (2003): Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization. J. Plant Nutr. Soil Sci. 166, 262–266.
Reynders, L, Vlassak, K. (1982): Use of Azospirillum brasilense as biofertilizer in intensive wheat cropping. Plant Soil 66, 217–223.
Salantur, A, Ozturk, R, Akten, S. (2006): Growth and yield response of spring wheat (Triticum aestivum L.) to inoculation with rhizobacteria. Plant Soil Environ. 52, 111–118.
Sarwar, M, Arshad, M, Martens, D. A, Frankenberger, W. T. (1992): Tryptophan-dependent biosynthesis of auxins in soil. Plant Soil 147, 207–215.
Shaharoona, B, Jamro, G. M, Zahir, Z. A, Arshad, M, Memon, K. S. (2007): Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 17, 1300–1307.
Shaharoona, B, Naveed, M, Arshad, M, Zahir, Z. A. (2008): Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl. Microbiol. Biotechnol. 79, 147–155.
Shen, H, He, X, Liu, Y, Chen, Y, Tang, J, Guo, T. (2016): A complex inoculant of N2-fixing, P- and K-solubilizing bacteria from a purple soil improves the growth of kiwifruit (Actinidia chinensis) plantlets. Front. Microbiol. 7. DOI: https://doi.org/10.3389/fmicb.2016.00841.
Singh, D, Rajawat, M. V. S, Kaushik, R, Prasanna, R, Saxena, A. K. (2017): Beneficial role of endophytes in biofortification of Zn in wheat genotypes varying in nutrient use efficiency grown in soils sufficient and deficient in Zn. Plant Soil 416, 107–116.
Spaepen, S, Dobbelaere, S, Croonenborghs, A, Vanderleyden, J. (2008): Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil 312, 15–23.
Spaepen, S, Vanderleyden, J, Remans, R. (2007): Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425–448.
Spolaor, L. T, Gonçalves, L. S. A, Santos, O. J. A. P. D, Oliveira, A. L. M. D, Scapim, C. A, Bertagna, F. A. B, Kuki, M. C. (2016): Plant growth-promoting bacteria associated with nitrogen fertilization at topdressing in popcorn agronomic performance. Bragantia 75, 33–40.
Swędrzyńska, D. (2000): Effect of inoculation with Azospirillum brasilense on development and yielding of winter wheat and oat under different cultivation conditions. Pol. J. Environ. Stud. 09, 423–428.
Talboys, P. J, Owen, D. W, Healey, J. R, Withers, P. J, Jones, D. L. (2014): Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum. BMC Plant Biol. 14. DOI: https://doi.org/10.1186/1471-2229-14-51.
Veresoglou, S. D, Menexes, G. (2010): Impact of inoculation with Azospirillum spp. on growth properties and seed yield of wheat: a meta-analysis of studies in the ISI Web of Science from 1981 to 2008. Plant Soil 337, 469–480.
Vincent, C. D, Gregory, P. J. (1989): Effects of temperature on the development and growth of winter wheat roots: I. Controlled glasshouse studies of temperature, nitrogen and irradiance. Plant Soil 119, 87–97.
Wang, L.-T, Lee, F.-L, Tai, C.-J, Kuo, H.-P. (2008): Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. Int. J. Syst. Evol. Microbiol. 58, 671–675.
Warembourg, F. R, Dreessen, R, Vlassak, K, Lafont, F. (1987): Peculiar effect of Azospirillum inoculation on growth and nitrogen balance of winter wheat (Triticum aestivum). Biol. Fertil. Soils 4, 55–59.
Warth, A. D. (1978): Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillus species. J. Bacteriol. 134, 699–705.
Yegorenkova, I. V, Tregubova, K. V, Burygin, G. L, Matora, L. Y, Ignatov, V. V. (2016): Assessing the efficacy of co-inoculation of wheat seedlings with the associative bacteria Paenibacillus polymyxa 1465 and Azospirillum brasilense Sp245. Can. J. Microbiol. 62, 279–285.
Yao, A. V, Bochow, D. H, Karimov, S, Boturov, U, Sanginboy, S, Sharipov, A. K. (2006): Effect of FZB 24® Bacillus subtilis as a biofertilizer on cotton yields in field tests. Arch. Phytopathol. Plant Prot. 39, 323–328.