Grandfils, Christian ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie générales, et biochimie humaine
Freitas, Filomena
Language :
English
Title :
Effect of mono- and dipotassium phosphate concentration on extracellular polysaccharide production by the bacterium Enterobacter A47
Santos-Beneit, F., The Pho regulon: a huge regulatory network in bacteria. Front. Microbiol., 6, 2015.
Gupta, P., Diwan, B., Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 13 (2017), 58–71.
Lee, N.-K., Jo, Y.-B., Jin, I.-H., Son, C.-W., Lee, J.-W., The effect of potassium phosphate as a pH stabilizer on the production of gellan by Sphingomonas paucibilis NK-2000. J. Life Sci. 19 (2009), 1033–1038.
Souw, P., Demain, A.L., Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459. Appl. Environ. Microbiol. 37 (1979), 1186–1192.
Umashankar, H., Annadurai, G., Chellapandian, M., Krishnan, M.R.V., Influence of nutrients on cell growth and xanthan production by Xanthomonas campestris. Bioprocess Eng. 14 (1996), 307–309.
Ashtaputre, A.A., Shah, A.K., Studies on the exopolysaccharide from Sphingomonas paucimobilis-GS1: nutritional requirements and precursor-forming enzymes. Curr. Microbiol. 31 (1995), 234–238.
Clementi, F., Fantozzi, P., Mancini, F., Moresi, M., Optimal conditions for alginate production by Azotobacter vinelandii. Enzyme Microb. Technol. 17 (1995), 983–988.
Farres, J., Caminal, G., Lopez-Santin, J., Influence of phosphate on rhamnose-containing exopolysaccharide rheology and production by Klebsiella I-714. Appl. Microbiol. Biotechnol. 48 (1997), 522–527.
Sabra, W., Zeng, A.-P., Sabry, S., Omar, S., Deckwer, W.-D., Effect of phosphate and oxygen concentrations on alginate production and stoichiometry of metabolism of Azotobacter vinelandii under microaerobic conditions. Appl. Microbiol. Biotechnol. 52 (1999), 773–780.
Pal, A., Biswas, A., Chatterjee, S., Paul, A.K., Optimization of cultural conditions for production of exopolysaccharide by Halomonas marina HMA 103 under batch-culture. Am. J. Microbiol. 6 (2015), 31–39.
Kazak Sarilmiser, H., Ates, O., Ozdemir, G., Arga, K.Y., Toksoy Oner, E., Effective stimulating factors for microbial levan production by Halomonas smyrnensis AAD6T. J. Biosci. Bioeng. 119 (2015), 455–463.
Mendrygal, K.E., González, J.E., Environmental regulation of exopolysaccharide production in Sinorhizobium meliloti. J. Bacteriol. 182 (2000), 599–606.
Jansson, M., Phosphate uptake and utilization by bacteria and algae. Phosphorus Freshwater Ecosystems, 1988, Springer, 177–189.
Janczarek, M., Urbanik-Sypniewska, T., Expression of the Rhizobium leguminosarum bv. trifolii pssA gene, involved in exopolysaccharide synthesis, is regulated by RosR, phosphate, and the carbon source. J. Bacteriol. 195 (2013), 3412–3423.
Freitas, F., Alves, V.D., Gouveia, A.R., Pinheiro, C., Torres, C.A.V., Grandfils, C., Reis, M.A.M., Controlled production of Exopolysaccharides from Enterobacter A47 as a function of carbon source with demonstration of their film and emulsifying abilities. Appl. Biochem. Biotechnol. 172 (2014), 641–657.
Torres, C.A.V., Marques, R., Antunes, S., Alves, V.D., Sousa, I., Ramos, A.M., Oliveira, R., Freitas, F., Reis, M.A.M., Kinetics of production and characterization of the fucose-containing exopolysaccharide from Enterobacter A47. J. Biotechnol. 156 (2011), 261–267.
Torres, C.A.V., Antunes, S., Ricardo, A.R., Grandfils, C., Alves, V.D., Freitas, F., Reis, M.A.M., Study of the interactive effect of temperature and pH on exopolysaccharide production by Enterobacter A47 using multivariate statistical analysis. Bioresour. Technol. 119 (2012), 148–156.
Torres, C.A.V., Marques, R., Ferreira, A.R.V., Antunes, S., Grandfils, C., Freitas, F., Reis, M.A.M., Impact of glycerol and nitrogen concentration on Enterobacter A47 growth and exopolysaccharide production. Int. J. Biol. Macromol. 71 (2014), 81–86.
Antunes, S., Freitas, F., Sevrin, C., Grandfils, C., Reis, M.A.M., Production of FucoPol by Enterobacter A47 using waste tomato paste by-product as sole carbon source. Bioresour. Technol. 227 (2017), 66–73.
Yu, X., Wang, Y., Wei, G., Dong, Y., Media optimization for elevated molecular weight and mass production of pigment-free pullulan. Carbohydr. Polym. 89 (2012), 928–934.
Horan, N.J., Jarman, T.R., Dawes, E.A., Effects of carbon source and inorganic phosphate concentration on the production of alginic acid by a mutant of Azotobacter vinelandii and on the enzymes involved in its biosynthesis. J. Gen. Microbiol. 127 (1981), 185–191.
Madhuri, K., Prabhakar, K., Microbial Exopolysaccharides: Biosynthesis and Potential Applications. Orient. J. Chem. 30 (2014), 1401–1410.
Sutherland, I.W., Biosynthesis of microbial exopolysaccharides. Rose, A.H., Morris, J.G., (eds.) ADvances in Microbial Physiology, 23, 1982, Academic Press, 79–150.
Janczarek, M., Environmental signals and regulatory pathways that influence exopolysaccharide production in Rhizobia. Int. J. Mol. Sci. 12 (2011), 7898–7933.
Stevenson, G., Andrianopoulos, K., Hobbs, M., Reeves, P.R., Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol. 178 (1996), 4885–4893.
Andrianopoulos, K., Wang, L., Reeves, P.R., Identification of the fucose synthetase gene in the colanic acid gene cluster of Escherichia coli K-12. J. Bacteriol. 180 (1998), 998–1001.
Albermann, C., Distler, J., Piepersberg, W., Preparative synthesis of GDP-beta-L-fucose by recombinant enzymes from enterobacterial sources. Glycobiology 10 (2000), 875–881.
Keller, M., Roxlau, A., Weng, W.M., Schmidt, M., Quandt, J., Niehaus, K., Jording, D., Arnold, W., Pühler, A., Molecular analysis of the Rhizobium meliloti mucR gene regulating the biosynthesis of the exopolysaccharides succinoglycan and galactoglucan. Mol. Plant Microbe Interact. 8 (1995), 267–277.
Jones, K.M., Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. J. Bacteriol. 1944 (2012), 322–4331.