Nayerossadat, N., Maedeh, T., Ali, P.A., Viral and nonviral delivery systems for gene delivery. Adv. Biomed. Res., 1, 2012, 27, 10.4103/2277-9175.98152.
Zhang, X.X., McIntosh, T.J., Grinstaff, M.W., Functional lipids and lipoplexes for improved gene delivery. Biochimie 94 (2012), 42–58, 10.1016/j.biochi.2011.05.005.
Zakrewsky, M., Kumar, S., Mitragotri, S., Nucleic acid delivery into skin for the treatment of skin disease: proofs-of-concept, potential impact, and remaining challenges. J. Control Release 219 (2015), 445–456, 10.1016/j.jconrel.2015.09.017.
Desmet, E., Bracke, S., Forier, K., Taevernier, L., Stuart, M.C., De Spiegeleer, B., et al. An elastic liposomal formulation for RNAi-based topical treatment of skin disorders: proof-of-concept in the treatment of psoriasis. Int. J. Pharm. 500 (2016), 268–274, 10.1016/j.ijpharm.2016.01.042.
Ita, K., Dermal/transdermal delivery of small interfering RNA and antisense oligonucleotides- advances and hurdles. Biomed. Pharmacother. 87 (2017), 311–320, 10.1016/j.biopha.2016.12.118.
Meacham, J.M., Durvasula, K., Degertekin, F.L., Fedorov, A.G., Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. J. Lab. Autom. 19 (2014), 1–18, 10.1177/2211068213494388.
Germershaus, O., Nultsch, K., Localized, non-viral delivery of nucleic acids: opportunities, challenges and current strategies. Asian J. Pharmaceut. Sci. 10 (2015), 159–175, 10.1016/j.ajps.2014.10.001.
Elsabahy, M., Foldvari, M., Needle-free gene delivery through the skin: an overview of recent strategies. Curr. Pharm. Design 19 (2013), 7301–7315, 10.2174/13816128113199990369.
Bolzinger, M.-A., Briançon, S., Pelletier, J., Chevalier, Y., Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid In. 17 (2012), 156–165, 10.1016/j.cocis.2012.02.001.
Shahzad, Y., Louw, R., Gerber, M., du Plessis, J., Breaching the skin barrier through temperature modulations. J Control Release 202 (2015), 1–13, 10.1016/j.jconrel.2015.01.019.
Jepps, O.G., Dancik, Y., Anissimov, Y.G., Roberts, M.S., Modeling the human skin barrier–towards a better understanding of dermal absorption. Adv. Drug. Deliv. Rev. 65 (2013), 152–168, 10.1016/j.addr.2012.04.003.
Bibi, N., Ahmed, N., Khan, G., Nanostructures in transdermal drug delivery systems. Grumezescu, A.M., (eds.) Nanostructures in Transdermal Drug Delivery System, 2017, Elsevier, 639–668.
Geusens, B., Strobbe, T., Bracke, S., Dynoodt, P., Sanders, N., Van Gele, M., et al. Lipid-mediated gene delivery to the skin. Eur. J. Pharm. Sci. 43 (2011), 199–211, 10.1016/j.ejps.2011.04.003.
Chen, X., Current and future technological advances in transdermal gene delivery. Adv. Drug Deliver. Rev. 127 (2018), 85–105, 10.1016/j.addr.2017.12.014.
Munch, S., Wohlrab, J., Neubert, R.H.H., Dermal and transdermal delivery of pharmaceutically relevant macromolecules. Eur. J. Pharm. Biopharm. 119 (2017), 235–242, 10.1016/j.ejpb.2017.06.019.
Barry, B.W., Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 14 (2001), 101–114, 10.1016/S0928-0987(01)00167-1.
Rietwyk, S., Peer, D., Next-generation lipids in RNA interference therapeutics. ACS Nano. 11 (2017), 7572–7586, 10.1021/acsnano.7b04734.
Patzelt, A., Mak, W.C., Jung, S., Knorr, F., Meinke, M.C., Richter, H., et al. Do nanoparticles have a future in dermal drug delivery?. J Control Release 246 (2017), 174–182, 10.1016/j.jconrel.2016.09.015.
Singh, Y., Tomar, S., Khan, S., Meher, J.G., Pawar, V.K., Raval, K., et al. Bridging small interfering RNA with giant therapeutic outcomes using nanometric liposomes. J. Control Release 220 (2015), 368–387, 10.1016/j.jconrel.2015.10.050.
McCaffrey, J., Donnelly, R.F., McCarthy, H.O., Microneedles: an innovative platform for gene delivery. Drug Deliv. Transl. Res. 5 (2015), 424–437, 10.1007/s13346-015-0243-1.
Ogundele, M., Okafor, H., Microneedles: a potent modern tool in enhancing transdermal drug delivery. Curr. Trends Biomed. Eng. & Biosci. 10 (2017), 1–9, 10.19080/CTBEB.2017.10.555776.
Van Der Maaden, K., Jiskoot, W., Bouwstra, J., Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control Release 161 (2012), 645–655, 10.1016/j.jconrel.2012.01.042.
Bariya, S.H., Gohel, M.C., Mehta, T.A., Sharma, O.P., Microneedles: an emerging transdermal drug delivery system. J. Pharm. Pharmacol. 64 (2012), 11–29, 10.1111/j.2042-7158.2011.01369.x.
Yin, W., Xiang, P., Li, Q., Investigations of the effect of DNA size in transient transfection assay using dual luciferase system. Anal. Biochem. 346 (2005), 289–294, 10.1016/j.ab.2005.08.029.
Williams, J.A., Vector design for improved DNA vaccine efficacy, safety and production. Vaccines 1 (2013), 225–249, 10.3390/vaccines1030225.
Mairhofer, J., Grabherr, R., Rational vector design for efficient non-viral gene delivery: challenges facing the use of plasmid DNA. Mol. Biotechnol. 39 (2008), 97–104, 10.1007/s12033-008-9046-7.
Williams, J.A., Carnes, A.E., Hodgson, C.P., Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol. Adv. 27 (2009), 353–370, 10.1016/j.biotechadv.2009.02.003.
Foldvari, M., Weng Chen, D., Nafissi, N., Calderon, D., Narsineni, L., Rafiee, A., Non-viral gene therapy: gains and challenges of non-invasive administration methods. J. Control Release 240 (2016), 165–190, 10.1016/j.jconrel.2015.12.012.
Lucas, M.L., Heller, L., Coppola, D., Heller, R., IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol. Ther. 5 (2002), 668–675, 10.1006/mthe.2002.0601.
Daud, A.I., DeConti, R.C., Andrews, S., Urbas, P., Riker, A.I., Sondak, V.K., et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 26 (2008), 5896–5903, 10.1200/JCO.2007.15.6794.
Chan, J., Lim, S., Wong, W., Antisense oligonucleotides: from design to therapeutic application. Clin. Exp. Pharmacol. Physiol. 33:5-6 (2006), 533–540, 10.1111/j.1440-1681.2006.04403.x.
Dias, N., Stein, C.A., Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther. 1 (2002), 347–355.
Geary, R.S., Norris, D., Yu, R., Bennett, C.F., Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv. Drug Deliv. Rev. 87 (2015), 46–51, 10.1016/j.addr.2015.01.008.
Fire, A., Xu, S., Montgomery, M., Kostas, S., Driver, S., Mello, C., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391 (1998), 806–811, 10.1038/35888.
Conde, J., Ambrosone, A., Hernandez, Y., Tian, F., McCully, M., Berry, C.C., et al. 15 years on siRNA delivery: beyond the State-of-the-Art on inorganic nanoparticles for RNAi therapeutics. Nano Today 10 (2015), 411–532, 10.1016/j.nantod.2015.06.008.
M. Gujrati, Z.-R. Lu, Gene Therapy of Cancer. Chapter 4: Targeted Systemic Delivery of Therapeutic siRNA, in: E. Lattime, S. Gerson (Eds.), 2014. pp. 47–65. DOI: 10.1016/b978-0-12-394295-1.00004-4.
Rao, D.D., Vorhies, J.S., Senzer, N., Nemunaitis, J., siRNA vs. shRNA: similarities and differences. Adv. Drug Deliv. Rev. 61 (2009), 746–759, 10.1016/j.addr.2009.04.004.
Castanotto, D., Rossi, J.J., The promises and pitfalls of RNA-interference-based therapeutics. Nature 457 (2009), 426–433, 10.1038/nature07758.
Videira, M., Arranja, A., Rafael, D., Gaspar, R., Preclinical development of siRNA therapeutics: towards the match between fundamental science and engineered systems. Nanomedicine 10 (2013), 689–702, 10.1016/j.nano.2013.11.018.
Moore, C.B., Guthrie, E.H., Huang, M.T., Taxman, D.J., Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol. Biol. 629 (2010), 141–158, 10.1007/978-1-60761-657-3_10.
Jackson, A.L., Burchard, J., Schelter, J., Chau, B.N., Cleary, M., Lim, L., et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12 (2006), 1179–1187, 10.1261/rna.25706.
Jackson, A., Bartz, S., Schelter, J., Kobayashi, S., Burchard, J., Mao, M., et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol., 21, 2003, 635, 10.1038/nbt831.
Birmingham, A., Anderson, E.M., Reynolds, A., Ilsley-Tyree, D., Leake, D., Fedorov, Y., et al. 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3 (2006), 199–204, 10.1038/nmeth854.
Sledz, C., Holko, M., de Veer, M., Silverma, R., Williams, B., Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5 (2003), 834–839, 10.1038/ncb1038.
R. Petrilli, J.O. Eloy, M.C. de Souza, J.P. Abriata Barcellos, J.M. Marchetti, B. Yung, et al., Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials. Chapter 3: Lipid nanoparticles as non-viral vectors for siRNA delivery, A. Grumezescu (Ed.), 2016. 75–109 DOI: 10.1016/b978-0-323-42866-8.00003-4.
Jackson, A.L., Burchard, J., Leake, D., Reynolds, A., Schelter, J., Guo, J., et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12 (2006), 1197–1205, 10.1261/rna.30706.
Chakraborty, C., Sharma, A., Sharma, G., Priya Doss, C.G., Lee, S.-S., Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol. Ther. 8 (2017), 132–143, 10.1016/j.omtn.2017.06.005.
Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., et al. Frequent deletions and down-regulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99 (2002), 15524–15529, 10.1073/pnas.242606799.
Chen, Y., Gao, D.Y., Huang, L., In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 81 (2015), 128–141, 10.1016/j.addr.2014.05.009.
Lindow, M., Kauppinen, S., Discovering the first microRNA-targeted drug. J. Cell Biol. 199 (2012), 407–412, 10.1083/jcb.201208082.
Hermann, H., Runnel, T., Aab, A., Baurecht, H., Rodriguez, E., Magilnick, N., et al. miR-146b Probably Assists miRNA-146a in the suppression of keratinocyte proliferation and inflammatory responses in psoriasis. J. Invest Dermatol. 137 (2017), 1945–1954, 10.1016/j.jid.2017.05.012.
Zeng, H.F., Yan, S., Wu, S.F., MicroRNA-153-3p suppress cell proliferation and invasion by targeting SNAI1 in melanoma. Biochem. Biophys. Res. Co. 487 (2017), 140–145, 10.1016/j.bbrc.2017.04.032.
Svoboda, M., Bilkova, Z., Muthny, T., Could tight junctions regulate the barrier function of the aged skin?. J. Dermatol. Sci. 81 (2016), 147–152, 10.1016/j.jdermsci.2015.11.009.
Elias, Epidermal lipids, barrier function and desquamation. J. Invest. Dermatol. 80 (1983), 44–49, 10.1038/jid.1983.12.
Barbieri, J.S., Wanat, K., Seykora, J., Skin: basic structure and function. Pathobiol. Human Disease, 2014, 1134–1144, 10.1016/b978-0-12-386456-7.03501-2.
Lai-Cheong, J.E., McGrath, J.A., Structure and function of skin, hair and nails. Medicine 45 (2017), 347–351, 10.1016/j.mpmed.2017.03.004.
M.A. Fung, Inflammatory Diseases of the Dermis and Epidermis, in Dermatopathology, in: K.J. Busam (Ed.), W.B. Saunders, Philadelphia, 2010. pp. 11–81. DOI: 10.1016/B978-0-443-06654-2.00001-9.
Leung, D.Y.M., Boguniewicz, M., Atopic Dermatitis and Allergic Contact Dermatitis. Holgate, S.T., Sheikh, A., (eds.) Middleton's Allergy Essentials, 2017, Elsevier, 265–300 DOI: 10.1016/b978-0-323-37579-5.00011-8.
Simoes, M.C., Sousa, J.J., Pais, A.A., Skin cancer and new treatment perspectives: a review. Cancer Lett. 357 (2015), 8–42, 10.1016/j.canlet.2014.11.001.
Taghipour, K., Perera, G.K., Autoimmune blistering skin diseases. Medicine 45 (2017), 405–412, 10.1016/j.mpmed.2017.04.007.
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliver Rev. 64 (2012), 4–17, 10.1016/j.addr.2012.09.019.
El Maghraby, G.M., Barry, B.W., Williams, A.C., Liposomes and skin: from drug delivery to model membranes. Eur. J. Pharm. Sci. 34 (2008), 203–222, 10.1016/j.ejps.2008.05.002.
Lademann, J., Otberg, N., Jacobi, U., Hoffman, R.M., Blume-Peytavi, U., Follicular penetration and targeting. J. Investig. Dermatol. Symp. Proc. 10 (2005), 301–303, 10.1111/j.1087-0024.2005.10121.x.
Lademann, J., Knorr, F., Richter, H., Blume-Peytavi, U., Vogt, A., Antoniou, C., et al. Hair follicles-an efficient storage and penetration pathway for topically applied substances. Summary of recent results obtained at the Center of Experimental and Applied Cutaneous Physiology, Charite -Universitatsmedizin Berlin, Germany. Skin Pharmacol. Physiol. 21 (2008), 150–155, 10.1159/000131079.
Lademann, J., Richter, H., Teichmann, A., Otberg, N., Blume-Peytavi, U., Luengo, J., et al. Nanoparticles-an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 66 (2007), 159–164, 10.1016/j.ejpb.2006.10.019.
Vogt, A., Mandt, N., Lademann, J., Schaefer, H., Blume-Peytavi, U., Follicular targeting–a promising tool in selective dermatotherapy. J. Investig. Dermatol. Symp. Proc. 10 (2005), 252–255, 10.1111/j.1087-0024.2005.10124.x.
Ogiso, T., Shiraki, T., Okajima, K., Tanino, T., Iwaki, M., Wada, T., Transfollicular drug delivery: penetration of drugs through human scalp skin and comparison of penetration between scalp and abdominal skins in vitro. J. Drug Target. 10 (2002), 369–378, 10.1080/1061186021000001814.
Neubert, R.H., Potentials of new nanocarriers for dermal and transdermal drug delivery. Eur. J. Pharm. Biopharm. 77 (2011), 1–2, 10.1016/j.ejpb.2010.11.003.
Alvarez-Roman, R., Naik, A., Kalia, Y.N., Guy, R.H., Fessi, H., Skin penetration and distribution of polymeric nanoparticles. J. Control Release 99 (2004), 53–62, 10.1016/j.jconrel.2004.06.015.
Wang, Y., Miao, L., Satterlee, A., Huang, L., Delivery of oligonucleotides with lipid nanoparticles. Adv. Drug Deliv. Rev. 87 (2015), 68–80, 10.1016/j.addr.2015.02.007.
Elouahabi, A., Ruysschaert, J., Formation and intracellular trafficking of lipoplexes and polyplexes. Mol. Ther. 11 (2005), 336–347, 10.1016/j.ymthe.2004.12.006.
Rehman, Z., Zuhorn, I.S., Hoekstra, D., How cationic lipids transfer nucleic acids into cells and across cellular membranes: recent advances. J. Control Release. 166 (2013), 46–56, 10.1016/j.jconrel.2012.12.014.
Bareford, L.M., Swaan, P.W., Endocytic mechanisms for targeted drug delivery. Adv. Drug. Deliv. Rev. 59 (2007), 748–758, 10.1016/j.addr.2007.06.008.
Rehman, Z., Hoekstra, D., Zuhorn, I.S., Protein kinase A inhibition modulates the intracellular routing of gene delivery vehicles in HeLa cells, leading to productive transfection. J. Control Release 156 (2011), 76–84, 10.1016/j.jconrel.2011.07.015.
Wasungu, L., Hoekstra, D., Cationic lipids, lipoplexes and intracellular delivery of genes. J Control Release 116 (2006), 255–264, 10.1016/j.jconrel.2006.06.024.
Douglas, K.L., Piccirillo, C.A., Tabrizian, M., Cell line-dependent internalization pathways and intracellular trafficking determine transfection efficiency of nanoparticle vectors. Eur. J. Pharm. Biopharm. 68 (2008), 676–687, 10.1016/j.ejpb.2007.09.002.
Vercauteren, D., Rejman, J., Martens, T.F., Demeester, J., De Smedt, S.C., Braeckmans, K., On the cellular processing of non-viral nanomedicines for nucleic acid delivery: mechanisms and methods. J. Control Release 161 (2012), 566–581, 10.1016/j.jconrel.2012.05.020.
Frere, A., Kawalec, M., Tempelaar, S., Peixoto, P., Hendrick, E., Peulen, O., et al. Impact of the structure of biocompatible aliphatic polycarbonates on siRNA transfection ability. Biomacromolecules 16 (2015), 769–779, 10.1021/bm501676p.
Frere, A., Baroni, A., Hendrick, E., Delvigne, A.S., Orange, F., Peulen, O., et al. PEGylated and functionalized aliphatic polycarbonate polyplex nanoparticles for intravenous administration of HDAC5 siRNA in cancer therapy. ACS Appl. Mater. Inter. 9 (2017), 2181–2195, 10.1021/acsami.6b15064.
Resnier, P., Montier, T., Mathieu, V., Benoit, J.P., Passirani, C., A review of the current status of siRNA nanomedicines in the treatment of cancer. Biomaterials 34 (2013), 6429–6443, 10.1016/j.biomaterials.2013.04.060.
Yameen, B., Choi, W.I., Vilos, C., Swami, A., Shi, J., Farokhzad, O.C., Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 190 (2014), 485–499, 10.1016/j.jconrel.2014.06.038.
Harries, D., May, S., Gelbart, W.M., Ben-Shaul, A., Structure, stability, and thermodynamics of lamellar DNA-lipid complexes. Biophys. J. 75 (1998), 159–173, 10.1016/S0006-3495(98)77503-4.
Mochizuki, S., Kanegae, N., Nishina, K., Kamikawa, Y., Koiwai, K., Masunaga, H., et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim. Biophys. Acta 1828 (2013), 412–418, 10.1016/j.bbamem.2012.10.017.
Du, Z., Munye, M.M., Tagalakis, A.D., Manunta, M.D., Hart, S.L., The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci. Rep., 4, 2014, 7107, 10.1038/srep07107.
Kanasty, R., Dorkin, J.R., Vegas, A., Anderson, D., Delivery materials for siRNA therapeutics. Nat. Mater. 12 (2013), 967–977, 10.1038/nmat3765.
Smisterova, J., Wagenaar, A., Stuart, M.C., Polushkin, E., ten Brinke, G., Hulst, R., et al. Molecular shape of the cationic lipid controls the structure of cationic lipid/dioleylphosphatidylethanolamine-DNA complexes and the efficiency of gene delivery. J. Biol. Chem. 276 (2001), 47615–47622, 10.1074/jbc.M106199200.
Cheng, X., Lee, R.J., The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliv. Rev. 99 (2016), 129–137, 10.1016/j.addr.2016.01.022.
Koltover, I., Salditt, T., Rädler, J.O., Safinya, C.R., An inverted hexagonal phase of cationic liposome-DNA complexes related to DNA release and delivery. Science 281 (1998), 78–81, 10.1126/science.281.5373.78.
A. Frère, B. Evrard, D. Mottet, G. Piel, Polymeric Nanoparticles as siRNA Drug Delivery System for Cancer Therapy: The Long Road to Therapeutic Efficiency, in: Nanoarchitectonics for Smart Delivery and Drug Targeting, 2016, pp. 503–540, https://doi.org/10.1016/b978-0-323-47347-7.00018-5.
Lechanteur, A., Furst, T., Evrard, B., Delvenne, P., Hubert, P., Piel, G., Development of anti-E6 pegylated lipoplexes for mucosal application in the context of cervical preneoplastic lesions. Int. J. Pharm. 483 (2015), 268–277, 10.1016/j.ijpharm.2015.02.041.
Lechanteur, A., Furst, T., Evrard, B., Delvenne, P., Hubert, P., Piel, G., PEGylation of lipoplexes: the right balance between cytotoxicity and siRNA effectiveness. Eur. J. Pharm. Sci. 93 (2016), 493–503, 10.1016/j.ejps.2016.08.058.
Lee, Y.S., Kim, S.W., Bioreducible polymers for therapeutic gene delivery. J. Control Release 190 (2014), 424–439, 10.1016/j.jconrel.2014.04.012.
Vaughan, E., DeGiulio, J.V., Dean, D.A., Intracellular trafficking of plasmids for gene therapy: mechanisms of cytoplasmic movement and nuclear import. Curr. Gene Ther. 6 (2006), 671–681, 10.2174/156652306779010688.
Lukacs, G., Haggie, P., Seksek, O., Lechardeur, D., Freedman, N., Verkman, A.S., Size-dependent DNA Mobility in Cytoplasm and Nucleus. J. Biol. Chem. 275 (2000), 1625–1629, 10.1074/jbc.275.3.1625.
Pollard, H., Toumaniantz, G., Amos, J., Ascande, D., Ca2+ - Sensitive cytosolic nucleases prevent efficient delivery to the nucleus of injected plasmids. J. Gene Med. 3 (2001), 153–164, 10.1002/jgm.160.
Vaughan, E.E., Dean, D.A., Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol. Ther. 13 (2006), 422–428, 10.1016/j.ymthe.2005.10.004.
Mesika, A., Kiss, V., Brumfled, V., Ghosh, G., Reich, Z., Enhanced intracellular mobility and nuclear accumulation of DNA plasmids associated with a karyophilic protein. Hum. Gene Ther. 16 (2005), 200–208, 10.1089/hum.2005.16.200.
Coonrod, A., Li, F., Horwitz, M., On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther. 4 (1997), 1313–1321, 10.1038/sj.gt.3300536.
Fasbender, A., Zabner, J., Zeiher, B., Welsh, M., A low rate of cell proliferation and reduced DNA uptake limit cationon lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia. Gene Ther. 4 (1997), 1173–1180, 10.1038/sj.gt.3300524.
Newman, C.M., Bettinger, T., Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther. 14 (2007), 465–475, 10.1038/sj.gt.3302925.
Lin, F., Shen, X., McCoy, J.R., Mendoza, J.M., Yan, J., Kemmerrer, S.V., et al. A novel prototype device for electroporation-enhanced DNA vaccine delivery simultaneously to both skin and muscle. Vaccine 29 (2011), 6771–6780, 10.1016/j.vaccine.2010.12.057.
Drabick, J.J., Glasspool-Malone, J., King, A., Malone, R.W., Cutaneous transfection and immune responses to intradermal nucleic acid vaccination are significantly enhanced by in vivo electropermeabilization. Mol. Ther. 3 (2001), 249–255, 10.1006/mthe.2000.0257.
Foldvari, M., Chen, D.W., Nafissi, N., Calderon, D., Narsineni, L., Rafiee, A., Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J. Control Release 240 (2016), 165–190, 10.1016/j.jconrel.2015.12.012.
Guo, X., Huang, L., Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 45 (2012), 971–979, 10.1021/ar200151m.
Thapa, B., Narain, R., Mechanism, current challenges and new approaches for non viral gene delivery. Polymers and Nanomaterials for Gene Therapy, 2016, Woodhead Publishing, 1–27, 10.1016/B978-0-08-100520-0.00001-1.
Singh, B., Khurana, R.K., Jain, A., Kaur, R., Kumar, R., Microporation and nanoporation for effective delivery of drugs and genes. Vijay, M., (eds.) Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes, 2017, Elsevier, 485–514 https://doi.org/10.1016/b978-0-12-809717-5.00004-x.
Chabri, F., Bouris, K., Jones, T., Barrow, D., Hann, A., Allender, C., et al. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Brit. J. Dermatol. 150 (2004), 869–877, 10.1111/j.1365-2133.2004.05921.x.
Coulman, S., Barrow, D., Anstey, A., Gateley, C., Morrissey, A., Wilke, N., et al. Minimally invasive cutaneous delivery of macromolecules and plasmid DNA via microneedles. Curr. Drug Deliv. 3 (2006), 65–75, 10.2174/156720106775197510.
Pearton, M., Saller, V., Coulman, S.A., Gateley, C., Anstey, A.V., Zarnitsyn, V., et al. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J Control Release. 160 (2012), 561–569, 10.1016/j.jconrel.2012.04.005.
Gonzalez-Gonzalez, E., Speaker, T.J., Hickerson, R.P., Spitler, R., Flores, M.A., Leake, D., et al. Silencing of reporter gene expression in skin using siRNAs and expression of plasmid DNA delivered by a soluble protrusion array device (PAD). Mol. Ther. 18 (2010), 1667–1674, 10.1038/mt.2010.126.
Kim, Y.C., Quan, F.S., Compans, R.W., Kang, S.M., Prausnitz, M.R., Formulation and coating of microneedles with inactivated influenza virus to improve vaccine stability and immunogenicity. J. Control Release 142 (2010), 187–195, 10.1016/j.jconrel.2009.10.013.
Guo, L., Qiu, Y., Chen, J., Zhang, S., Xu, B., Gao, Y., Effective transcutaneous immunization against hepatitis B virus by a combined approach of hydrogel patch formulation and microneedle arrays. Biomed. Microdevices 15 (2013), 1077–1085, 10.1007/s10544-013-9799-z.
Yin, Dongfeng, Liang, W., Xing, Shuxing, Gao, Zhixiang, Zhang, Wei, Guo, Zhili, Gao, Shen, Hepatitis B DNA vaccine-polycation nano-complexes enhancing immune response by percutaneous administration with microneedle. Biol. Pharm. Bull. 36 (2013), 1283–1291, 10.1248/bpb.b13-00050.
Edens, C., Collins, M.L., Goodson, J.L., Rota, P.A., Prausnitz, M.R., A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 33 (2015), 4712–4718, 10.1016/j.vaccine.2015.02.074.
Matsuo, K., Hirobe, S., Yokota, Y., Ayabe, Y., Seto, M., Quan, Y.S., et al. Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza. J. Control Release 160 (2012), 495–501, 10.1016/j.jconrel.2012.04.001.
Carey, J.B., Vrdoljak, A., O'Mahony, C., Hill, A.V., Draper, S.J., Moore, A.C., Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route. Sci. Rep., 4, 2014, 6154, 10.1038/srep06154.
Yang, H.W., Ye, L., Guo, X.D., Yang, C., Compans, R.W., Prausnitz, M.R., Ebola vaccination using a DNA vaccine coated on PLGA-PLL/gammaPGA nanoparticles administered using a microneedle patch. Adv. Healthc. Mater., 6, 2017, 10.1002/adhm.201600750.
Lee, K., Kim, J.D., Lee, C.Y., Her, S., Jung, H., A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials 32 (2011), 7705–7710, 10.1016/j.biomaterials.2011.06.058.
Jose, A., Labala, S., Venuganti, V.V., Co-delivery of curcumin and STAT3 siRNA using deformable cationic liposomes to treat skin cancer. J. Drug Target 25 (2017), 330–341, 10.1080/1061186X.2016.1258567.
Labala, S., Jose, A., Chawla, S.R., Khan, M.S., Bhatnagar, S., Kulkarni, O.P., et al. Effective melanoma cancer suppression by iontophoretic co-delivery of STAT3 siRNA and imatinib using gold nanoparticles. Int. J. Pharm. 525 (2017), 407–417, 10.1016/j.ijpharm.2017.03.087.
Venuganti, V.V., Saraswathy, M., Dwivedi, C., Kaushik, R.S., Perumal, O.P., Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model. Nanoscale 7 (2015), 3903–3914, 10.1039/c4nr05241b.
Seok, H., Noh, J.Y., Lee, D.Y., Kim, S.J., Song, C.S., Kim, Y.C., Effective humoral immune response from a H1N1 DNA vaccine delivered to the skin by microneedles coated with PLGA-based cationic nanoparticles. J. Control Release 265 (2017), 66–74, 10.1016/j.jconrel.2017.04.027.
Hu, Y., Xu, B., Xu, J., Shou, D., Liu, E., Gao, J., et al. Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polym. Chem. 6 (2015), 373–379, 10.1039/c4py01394h.
Roberts, M.S., Mohammed, Y., Pastore, M.N., Namjoshi, S., Yousef, S., Alinaghi, A., et al. Topical and cutaneous delivery using nanosystems. J. Control Release 247 (2017), 86–105, 10.1016/j.jconrel.2016.12.022.
Lehto, T., Ezzat, K., Wood, M.J.A., El Andaloussi, S., Peptides for nucleic acid delivery. Adv. Drug Deliv. Rev. 106 (2016), 172–182, 10.1016/j.addr.2016.06.008.
Carrillo, C., Sánchez-Hernández, N., García-Montoya, E., Pérez-Lozano, P., Suñé-Negre, J.M., Ticó, J.R., et al. DNA delivery via cationic solid lipid nanoparticles (SLNs). Eur. J. Pharm. Sci. 49 (2013), 157–165, 10.1016/j.ejps.2013.02.011.
Sala, M., Diab, R., Elaissari, A., Fessi, H., Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int. J. Pharm. 535 (2018), 1–17, 10.1016/j.ijpharm.2017.10.046.
Bozzuto, G., Molinari, A., Liposomes as nanomedical devices. Int. J. Nanomed. 10 (2015), 975–999, 10.2147/IJN.S68861.
Egbaria, K., Weiner, W., Liposomes as a topical drug delivery system. Adv. Drug Deliv. Rev. 5 (1990), 287–300, 10.1016/0169-409X(90)90021-J.
Gillet, A., Evrard, B., Piel, G., Liposomes and parameters affecting their skin penetration behaviour. J. Drug Deliv. Sci. Tec. 21 (2011), 35–42, 10.1016/s1773-2247(11)50004-8.
Chen, C., Han, D., Cai, C., Tang, X., An overview of liposome lyophilization and its future potential. J. Control Release 142 (2010), 299–311, 10.1016/j.jconrel.2009.10.024.
Ghanbarzadeh, S., Valizadeh, H., Zakeri-Milani, P., The effects of lyophilization on the physico-chemical stability of sirolimus liposomes. Adv. Pharm. Bull. 3 (2013), 25–29, 10.5681/apb.2013.005.
Li, L., Hoffman, R.M., Model of selective gene therapy of hair growth: liposome targeting of the active lac-z gene to hair follicles of histocultured skin. Vitro Cell Dev-An. 31 (1995), 11–13, 10.1007/BF02631332.
Trauer, S., Richter, H., Kuntsche, J., Buttemeyer, R., Liebsch, M., Linscheid, M., et al. Influence of massage and occlusion on the ex vivo skin penetration of rigid liposomes and invasomes. Eur. J. Pharm. Biopharm. 86 (2014), 301–306, 10.1016/j.ejpb.2013.11.004.
Geusens, B., Van Gele, M., Braat, S., De Smedt, S., Stuart, M., Prow, T., et al. Flexible nanosomes (SECosomes) enable efficient siRNA delivery in cultured primary skin cells and in the viable epidermis of ex vivo human skin. Adv. Funct. Mater. 20 (2010), 4077–4090, 10.1002/adfm.201000484.
Honeywell-Nguyen, P.L., Gooris, G.S., Bouwstra, J.A., Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J. Investig. Dermatol. Symp. Proc. 123 (2004), 902–910, 10.1111/j.0022-202X.2004.23441.x.
Elsayed, M.M., Abdallah, O.Y., Naggar, V.F., Khalafallah, N.M., Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int. J. Pharm. 332 (2007), 1–16, 10.1016/j.ijpharm.2006.12.005.
Felgner, P.L., Gadek, T.R., Holm, M., Roman, R., Chan, H.W., Wenz, M., et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84 (1987), 7413–7417, 10.1073/pnas.84.21.7413.
Ruponen, M., Ronkko, S., Honkakoski, P., Pelkonen, J., Tammi, M., Urtti, A., Extracellular glycosaminoglycans modify cellular trafficking of lipoplexes and polyplexes. J. Biol. Chem. 276 (2001), 33875–33880, 10.1074/jbc.M011553200.
Düzgüneş, N., Felgner, P.L., Intracellular delivery of nucleic acids and transcription factors by cationic liposomes. Methods in Enzymology, 1993, Academic Press, 303–306 https://doi.org/10.1016/0076-6879(93)21025-4.
Pires, P., Simões, S., Nir, S., Gaspar, R., Düzgünes, N., Pedroso de Lima, M.C., Interaction of cationic liposomes and their DNA complexes with monocytic leukemia cells. BBA-Biomembranes 1418 (1999), 71–84, 10.1016/S0005-2736(99)00023-1.
Tros de Ilarduya, C., Sun, Y., Duzgunes, N., Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 40 (2010), 159–170, 10.1016/j.ejps.2010.03.019.
Balazs, D.A., Godbey, W., Liposomes for use in gene delivery. J. Drug Deliv., 2011, 2011, 326497, 10.1155/2011/326497.
Belmadi, N., Midoux, P., Loyer, P., Passirani, C., Pichon, C., Le Gall, T., et al. Synthetic vectors for gene delivery: an overview of their evolution depending on routes of administration. Biotechnol. J. 10 (2015), 1370–1389, 10.1002/biot.201400841.
Viricel, W., Poirier, S., Mbarek, A., Derbali, R.M., Mayer, G., Leblond, J., Cationic switchable lipids: pH-triggered molecular switch for siRNA delivery. Nanoscale 9 (2017), 31–36, 10.1039/c6nr06701h.
Viricel, W., Mbarek, A., Leblond, J., Switchable lipids: conformational change for fast ph-triggered cytoplasmic delivery. Angew. Chem. Int. Ed. Engl. 54 (2015), 12743–12747, 10.1002/anie.201504661.
Obata, Y., Saito, S., Takeda, N., Takeoka, S., Plasmid DNA-encapsulating liposomes: effect of a spacer between the cationic head group and hydrophobic moieties of the lipids on gene expression efficiency. BBA-Biomembranes 1788 (2009), 1148–1158, 10.1016/j.bbamem.2009.02.014.
Lv, H., Zhang, S., Wang, B., Cui, S., Yan, J., Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control Release 114 (2006), 100–109, 10.1016/j.jconrel.2006.04.014.
Pedroso de Lima, M.C., Simões, S., Pires, P., Faneca, H., Düzgüneş, N., Cationic lipid–DNA complexes in gene delivery: from biophysics to biological applications. Adv. Drug Deliv. Rev. 47 (2001), 277–294, 10.1016/S0169-409X(01)00110-7.
Birchall, J.C., Marichal, C., Campbell, L., Alwan, A., Hadgraft, J., Gumbleton, M., Gene expression in an intact ex-vivo skin tissue model following percutaneous delivery of cationic liposome–plasmid DNA complexes. Int. J. Pharm. 197 (2000), 233–238, 10.1016/S0378-5173(00)00336-7.
Abdulbaqi, I.M., Darwis, Y., Khan, N.A.K., Assi, R.A., Khan, A.A., Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 11 (2016), 2279–2304, 10.2147/IJN.S105016.
Kim, B.K., Hwang, G.B., Seu, Y.B., Choi, J.S., Jin, K.S., Doh, K.O., DOTAP/DOPE ratio and cell type determine transfection efficiency with DOTAP-liposomes. Biochim. Biophys. Acta 1848 (2015), 1996–2001, 10.1016/j.bbamem.2015.06.020.
Kapoor, M., Burgess, D.J., Patil, S.D., Physicochemical characterization techniques for lipid based delivery systems for siRNA. Int. J. Pharm. 427 (2012), 35–57, 10.1016/j.ijpharm.2011.09.032.
Patil, S.D., Rhodes, D.G., Burgess, D.J., Anionic liposomal delivery system for DNA transfection. AAPS J. 6 (2004), 13–22, 10.1208/aapsj060429.
Somiya, M., Yamaguchi, K., Liu, Q., Niimi, T., Maturana, A.D., Iijima, M., et al. One-step scalable preparation method for non-cationic liposomes with high siRNA content. Int. J. Pharm. 490 (2015), 316–323, 10.1016/j.ijpharm.2015.05.072.
Srinivasan, C., Burgess, D.J., Optimization and characterization of anionic lipoplexes for gene delivery. J. Control Release 136 (2009), 62–70, 10.1016/j.jconrel.2009.01.022.
Gillet, A., Compere, P., Lecomte, F., Hubert, P., Ducat, E., Evrard, B., et al. Liposome surface charge influence on skin penetration behaviour. Int. J. Pharm. 411 (2011), 223–231, 10.1016/j.ijpharm.2011.03.049.
Kulkarni, V.I., Shenoy, V.S., Dodiya, S.S., Rajyaguru, T.H., Murthy, R.R., Role of calcium in gene delivery. Expert Opin. Drug Del. 3 (2006), 235–245, 10.1517/17425247.3.2.235.
Lasic, D.D., Templeton, N.S., Liposomes in gene therapy. Adv Drug Deliv. Rev. 20 (1996), 221–266, 10.1016/0169-409X(96)00002-6.
Cevc, G., Blume, G., Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. BBA-Biomembranes 1104 (1992), 226–232, 10.1016/0005-2736(92)90154-E.
Cevc, G., Gebauer, D., Hydration-driven transport of deformable lipid vesicles through fine pores and the skin barrier. Biophys. J. 84 (2003), 1010–1024, 10.1016/S0006-3495(03)74917-0.
Abdallah, M.H., Transfersomes as a transdermal drug delivery system for enhancement the antifungal activity of nystatin. J. Pharm. Pharm. Sci. 5 (2013), 560–567.
Gillet, A., Grammenos, A., Compere, P., Evrard, B., Piel, G., Development of a new topical system: drug-in-cyclodextrin-in-deformable liposome. Int. J. Pharm. 380 (2009), 174–180, 10.1016/j.ijpharm.2009.06.027.
Gillet, A., Lecomte, F., Hubert, P., Ducat, E., Evrard, B., Piel, G., Skin penetration behaviour of liposomes as a function of their composition. Eur. J. Pharm. Biopharm. 79 (2011), 43–53, 10.1016/j.ejpb.2011.01.011.
Lee, E.H., Kim, A., Oh, Y.-K., Kim, C.-K., Effect of edge activators on the formation and transfection efficiency of ultradeformable liposomes. Biomaterials 26 (2005), 205–210, 10.1016/j.biomaterials.2004.02.020.
Kim, A., Lee, E.H., Choi, S.-H., Kim, C.-K., In vitro and in vivo transfection efficiency of a novel ultradeformable cationic liposome. Biomaterials 25 (2004), 305–313, 10.1016/s0142-9612(03)00534-9.
Jin, S.-E., Kim, C.-K., Charge-mediated topical delivery of plasmid DNA with cationic lipid nanoparticles to the skin. Colloids Surf. B Biointerfaces 116 (2014), 582–590, 10.1016/j.colsurfb.2014.01.053.
Dorrani, M., Garbuzenko, O.B., Minko, T., Michniak-Kohn, B., Development of edge-activated liposomes for siRNA delivery to human basal epidermis for melanoma therapy. J. Control Release 228 (2016), 150–158, 10.1016/j.jconrel.2016.03.010.
Dragicevic, Nina, Atkinson, Jelena Predic, Maibach, Howard I., Chemical penetration enhancers: classification and mode of action. Dragicevic, Nina, Maibach, Howard I., (eds.) Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement, 2015, Springer Berlin Heidelberg, Berlin, Heidelberg, 11–27 https://doi.org/10.1007/978-3-662-47039-8_2 http://link.springer.com/10.1007/978-3-662-47039-8_2.
Touitou, E., Dayan, N., Bergelson, L., Godin, B., Eliaz, M., Ethosomes- novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J. Control Release 65 (2000), 403–418, 10.1016/S0168-3659(99)00222-9.
Godin, B., Touitou, E., Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J. Control Release 94 (2004), 365–379, 10.1016/j.jconrel.2003.10.014.
Dayan, N., Touitou, E., Carriers for skin delivery of trihexyphenidyl HCl: ethosomes vs. liposomes. Biomaterials 21:18 (2000), 1879–1885, 10.1016/S0142-9612(00)00063-6.
Verma, P., Pathak, K., Nanosized ethanolic vesicles loaded with econazole nitrate for the treatment of deep fungal infections through topical gel formulation. Nanomedicine 8 (2012), 489–496, 10.1016/j.nano.2011.07.004.
Manosroi, J., Khositsuntiwong, N., Manosroi, W., Götz, F., Werner, R.G., Manosroi, A., Enhancement of transdermal absorption, gene expression and stability of tyrosinase plasmid (pMEL34)-loaded elastic cationic niosomes: potential application in vitiligo treatment. J. Pharm. Sci. 99 (2010), 3533–3541, 10.1002/jps.22104.
Verma, D.D., Verma, S., Blume, G., Fahr, A., Particle size of liposomes influences dermal delivery of substances into skin. Int. J. Pharm. 258 (2003), 141–151, 10.1016/s0378-5173(03)00183-2.
Choi, M.J., Maibach, H.I., Elastic vesicles as topical/transdermal drug delivery systems. Int. J. Cosmetic Sci. 27 (2005), 211–221, 10.1111/j.1467-2494.2005.00264.x.
Ross, K., Towards topical microRNA-directed therapy for epidermal disorders. J. Control Release 269 (2018), 136–147, 10.1016/j.jconrel.2017.11.013.
Leachman, S.A., Hickerson, R.P., Hull, P.R., Smith, F.J., Milstone, M.L., Lane, E.B., et al. Therapeutic siRNAs for dominant genetic skin disorders including pachyonychia congenita. J. Dermatol. Sci. 51 (2008), 151–157, 10.1016/j.jdermsci.2008.04.003.
Ishimoto, I., Takei, Y., Yuzawa, Y., Hanai, K., Nagahara, S., Tarumi, Y., et al. Downregulation of monocyte chemoattractant protein-1 involving short interfering RNA attenuates hapten-induced contact hypersensitivity. Mol. Ther. 16 (2008), 387–395, 10.1038/sj.mt.6300360.
Ibaraki, H., Kanazawa, T., Takashima, Y., Okada, H., Seta, Y., Development of an innovative intradermal siRNA delivery system using a combination of a functional stearylated cytoplasm-responsive peptide and a tight junction-opening peptide. Molecules, 21, 2016, 10.3390/molecules21101279.
Ibaraki, H., Kanazawa, T., Takashima, Y., Okada, H., Seta, Y., Transdermal anti-nuclear kappaB siRNA therapy for atopic dermatitis using a combination of two kinds of functional oligopeptide. Int. J. Pharm. 542 (2018), 213–220, 10.1016/j.ijpharm.2018.03.026.
Zhou, X., Tan, F.K., Guo, X., Arnett, F.C., Attenuation of collagen production with small interfering RNA of SPARC in cultured fibroblasts from the skin of patients with scleroderma. Arthritis Rheum. 54 (2006), 2626–2631, 10.1002/art.21973.
Nakamura, M., Jo, J.-I., Tabata, Y., Ishikawa, O., Controlled delivery of T-box21 small interfering RNA ameliorates autoimmune alopecia (Alopecia Areata) in a C3H/HeJ mouse model. Am. J. Pathol. 172 (2008), 650–658, 10.2353/ajpath.2008.061249.
Manosroi, A., Khositsuntiwong, N., Gotz, F., Werner, R.G., Manosroi, J., Transdermal enhancement through rat skin of luciferase plasmid DNA loaded in elastic nanovesicles. J. Liposome Res. 19 (2009), 335–348, 10.1080/08982100902731523.
Peachman, K., Rao, M., Alving, C.R., Immunization with DNA through the skin. Methods 31 (2003), 232–242, 10.1016/s1046-2023(03)00137-3.
Kim, Y.C., Jarrahian, C., Zehrung, D., Mitragotri, S., Prausnitz, M.R., Enabling skin vaccination using new delivery technologies. Drug Deliv. Transl. Res. 1 (2011), 7–12, 10.1007/s13346-010-0005-z.
Van den Berg, J.H., Nuijen, B., Schumacher, T.N., Haanen, J.B., Storm, G., Beijnen, J.H., et al. Synthetic vehicles for DNA vaccination. J. Drug Target. 18 (2010), 1–14, 10.3109/10611860903278023.
Van den Berg, J.H., Nuijen, B., Beijnen, J.H., Vincent, A., van Tinteren, H., Kluge, J., et al. Optimization of Intradermal Vaccination by DNA Tattooing in Human Skin. Hum. Gene Ther. 20 (2009), 181–189, 10.1089/hgt.2008.073.
Lou, P.J., Cheng, W.F., Chung, Y.C., Cheng, C.Y., Chiu, L.H., Young, T.H., PMMA particle-mediated DNA vaccine for cervical cancer. J. Biomed. Mater. Res. A 88 (2009), 849–857, 10.1002/jbm.a.31919.
Arya, J., Prausnitz, M.R., Microneedle patches for vaccination in developing countries. J. Control Release 240 (2016), 135–141, 10.1016/j.jconrel.2015.11.019.
Wang, J., Hu, J.H., Li, F.Q., Liu, G.Z., Zhu, Q.G., Liu, J.Y., et al. Strong cellular and humoral immune responses induced by transcutaneous immunization with HBsAg DNA-cationic deformable liposome complex. Exp. Dermatol. 16 (2007), 724–729, 10.1111/j.1600-0625.2007.00584.x.
Vyas, S.P., Singh, R.P., Jain, S., Mishra, V., Mahor, S., Singh, P., et al. Non-ionic surfactant based vesicles (niosomes) for non-invasive topical genetic immunization against hepatitis B. Int. J. Pharm. 296 (2005), 80–86, 10.1016/j.ijpharm.2005.02.016.
Mahor, S., Rawat, A., Dubey, P.K., Gupta, P.N., Khatri, K., Goyal, A.K., et al. Cationic transfersomes based topical genetic vaccine against hepatitis B. Int. J. Pharm. 340 (2007), 13–19, 10.1016/j.ijpharm.2007.03.006.
Xu, J., Ding, Y., Yang, Y., Enhancement of mucosal and cellular immune response in mice by vaccination with respiratory syncytial virus DNA encapsulated with transfersome. Viral Immunol. 21 (2008), 483–489, 10.1089/vim.2008.0044.
Geusens, B., Sanders, N., Prow, T., Van Gele, M., Lambert, J., Cutaneous short-interfering RNA therapy. Expert Opin. Drug Deliv. 6 (2009), 1333–1349, 10.1517/17425240903304032.
Higgins, E., Psoriasis. Medicine 45 (2017), 368–378, 10.1016/j.mpmed.2017.03.010.
Ghoreschi, K., Thomas, P., Breit, S., Dugas, M., Mailhammer, R., van Eden, W., et al. Interleukin-4 therapy of psoriasis induces Th2 responses and improves human autoimmune disease. Nat. Med. 9 (2003), 40–46, 10.1038/nm804.
Zhang, Y., Li, J., Liu, C.Y., Zhou, X.K., Qiu, J., Zhang, Y.B., et al. A novel transdermal plasmid-dimethylsulfoxide delivery technique for treatment of psoriasis. Dermatology 221 (2010), 84–92, 10.1159/000314154.
Li, J., Li, X., Zhang, Y., Zhou, X.K., Yang, H.S., Chen, X.C., et al. Gene therapy for psoriasis in the K14-VEGF transgenic mouse model by topical transdermal delivery of interleukin-4 using ultradeformable cationic liposome. J. Gene Med. 12 (2010), 481–490, 10.1002/jgm.1459.
Depieri, L.V., Borgheti-Cardoso, L.N., Campos, P.M., Otaguiri, K.K., Vicentini, F.T., Lopes, L.B., et al. RNAi mediated IL-6 in vitro knockdown in psoriasis skin model with topical siRNA delivery system based on liquid crystalline phase. Eur. J. Pharm. Biopharm. 105 (2016), 50–58, 10.1016/j.ejpb.2016.05.012.
Xue, H.Y., Liu, S., Wong, H.L., Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine 9 (2014), 295–312, 10.2217/nnm.13.204.
Bracke, S., Desmet, E., Guerrero-Aspizua, S., Tjabringa, S.G., Schalkwijk, J., Van Gele, M., et al. Identifying targets for topical RNAi therapeutics in psoriasis: assessment of a new in vitro psoriasis model. Arch. Dermatol. Res. 305 (2013), 501–512, 10.1007/s00403-013-1379-9.
Geusens, B., Lambert, J., De Smedt, S.C., Buyens, K., Sanders, N.N., Van Gele, M., Ultradeformable cationic liposomes for delivery of small interfering RNA (siRNA) into human primary melanocytes. J. Control Release 133 (2009), 214–220, 10.1016/j.jconrel.2008.10.003.
Bracke, S., Carretero, M., Guerrero-Aspizua, S., Desmet, E., Illera, N., Navarro, M., et al. Targeted silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: development of siRNA SECosome-based novel therapies. Exp. Dermatol. 23 (2014), 199–201, 10.1111/exd.12321.
Jakobsen, M., Stenderup, K., Rosada, C., Moldt, B., Kamp, S., Dam, T.N., et al. Amelioration of psoriasis by anti-TNF-alpha RNAi in the xenograft transplantation model. Mol. Ther. 17 (2009), 1743–1753, 10.1038/mt.2009.141.
Marepally, S., Boakye, C.H., Patel, A.R., Godugu, C., Doddapaneni, R., Desai, P.R., et al. Topical administration of dual siRNAs using fusogenic lipid nanoparticles for treating psoriatic-like plaques. Nanomedicine 9 (2014), 2157–2174, 10.2217/nnm.13.202.
Bleiziffer, O., Eriksson, E., Yao, F., Horch, R.E., Kneser, U., Gene transfer strategies in tissue engineering. J. Cell Mol. Med. 11 (2007), 206–223, 10.1111/j.1582-4934.2007.00027.x.
Sun, L., Xu, L., Chang, H.I., Henry, F.A., Miller, R.M., Harmon, J.M., et al. Transfection with aFGF cDNA improves wound healing. J. Invest. Dermatol. 108 (1997), 415–426, 10.1111/1523-1747.ep12286471.
Jeschke, M.G., Barrow, R.E., Hawkins, H.K., Chrysopoulo, M.T., Perez-Polo, J.R., Herndon, D.N., Effect of multiple gene transfers of insulin like growth factor I complementary DNA gene constructs in rats after thermal injury. Arch. Surg. 134 (1999), 12–19, 10.1001/archsurg.134.10.1137.
Pereira, C.T., Herndon, D.N., Rocker, R., Jeschke, M.G., Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression. J. Surg. Res. 139 (2007), 222–228, 10.1016/j.jss.2006.09.005.
Randeria, P.S., Seeger, M.A., Wang, X.Q., Wilson, H., Shipp, D., Mirkin, C.A., et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc. Natl. Acad. Sci. USA 112 (2015), 5573–5578, 10.1073/pnas.1505951112.
Rabbani, P.S., Zhou, A., Borab, Z.M., Frezzo, J.A., Srivastava, N., More, H.T., et al. Novel lipoproteoplex delivers Keap1 siRNA based gene therapy to accelerate diabetic wound healing. Biomaterials 132 (2017), 1–15, 10.1016/j.biomaterials.2017.04.001.
Satyamoorthy, K., Herlyn, M., Cellular and molecular biology of human melanoma. Cancer Biol. Ther. 1 (2002), 14–17, 10.4161/cbt.1.1.32.
Hoeflich, K., Gray, D., Eby, M., Toien, J., Wong, L., Bower, J., et al. Oncogenic BRAF is required for tumor growth and maintenance in melanoma models?. Cancer Res. 66 (2006), 999–1006, 10.1158/0008-5472.CAN-05-2720.
Matsumoto, G., Kushibiki, T., Kinoshita, Y., Lee, U., Omui, Y., Kubota, E., et al. Cationized gelatin delivery of a plasmid DNA expressing small interference RNA for VEGF inhibits murine squamous cell carcinoma. Cancer Sci. 97 (2006), 313–321, 10.1111/j.1349-7006.2006.00174.x.
Rodolfo, M., Cato, E.M., Soldati, S., Ceruti, R., Asioli, M., Scanziani, E., et al. Growth of human melanoma xenographs is suppressed by systemic angiostatin gene therapy. Cancer Gene Ther. 8 (2001), 491–496, 10.1038/sj.cgt.7700331.
Speroni, L., Gasparri, J., de los, A.B.V., Chiaramoni, N.S., Smagur, A., Szala, S., et al. Antitumoral effect of IL-12 gene transfected via liposomes into B16F0 cells. Acta Biochim. Pol. 56 (2009), 249–253.
Rakhmilevich, A., Timmins, J., Janssen, K., Pohlmann, E., Sheehy, M., Yang, N., Gene gun-mediated IL-12 gene therapy induces antitumor effects in the absence of toxicity: a direct comparison with systemic IL-12 protein therapy. J. Immunother. 22 (1999), 135–144.
Tran, M.A., Gowda, R., Sharma, A., Park, E.J., Adair, J., Kester, M., et al. Targeting V600EB-Raf and Akt3 using nanoliposomal-small interfering RNA inhibits cutaneous melanocytic lesion development. Cancer Res. 68 (2008), 7638–7649, 10.1158/0008-5472.CAN-07-6614.
Zheng, D., Giljohann, D.A., Chen, D.L., Massich, M.T., Wang, X.Q., Iordanov, H., et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. USA 109 (2012), 11975–11980, 10.1073/pnas.1118425109/-/DCSupplemental.
Niu, J., Chu, Y., Huang, Y.F., Chong, Y.S., Jiang, Z.H., Mao, Z.W., et al. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl. Mater. Inter. 9 (2017), 9388–9401, 10.1021/acsami.6b16378.