Gas Chromatography - Mass Spectrometry; Mobile Health; Paper Microfluidics; Sepsis; Volatile Organic Compounds; Biomarkers; Codes (symbols); Color; Colorimetry; Drug products; Escherichia coli; Mass spectrometry; Microfluidics; Mobile telecommunication systems; Paper; Polycyclic aromatic hydrocarbons; Bloodstream infections; Gas chromatography-mass spectrometry; Headspace solid phase microextraction; Microfluidic platforms; Real-time diagnostics; Time of flight mass spectrometry; Two dimensional gas chromatography; Gas chromatography
Bartos, J., Pesez, M., Colorimetric and flourimetric determination of aldehydes and ketones. Pure Appl. Chem. 51 (1979), 1803–1814.
Bean, H.D., Dimandja, J.M.D., Hill, J.E., Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 901 (2012), 41–46.
Beekmann, S.E., Diekema, D.J., Chapin, K.C., Doern, G.V., Effects of rapid detection of bloodstream infections on length of hospitalization and hospital charges. J. Clin. Microbiol. 41 (2003), 3119–3125.
Carrilho, E., Martinez, A.W., Whitesides, G.M., Understanding wax printing: a simple micropatterning process for paper-bases microfluidics. Anal. Chem. 81 (2009), 7091–7095.
Crunaire, S., et al. Discriminating bacteria with optical sensors based on functionalized nanoporous xerogels. Chemosensors 2 (2014), 171–181.
Falas, T., Kashani, H., 2007. - Proceedings of the Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops. PerCom Workshops 2007, pp. 597–600.
Fang, X., Wei, S., Kong, J., Paper-based microfluidics with high resolution, cut on a glass fiber membrane for bioassays. Lab Chip 14 (2014), 911–915.
Gao, Z., Hou, L., Xu, M., Tang, D., Enhanced colorimetric immunoassay accompanying with enzyme cascade amplification strategy for ultrasensitive detection of low-abundance protein. Sci. Rep., 4, 2014, 3966.
Gracias, K.S., McKillip, J.L., A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 50 (2004), 883–890.
Haeberle, S., Mark, D., Von Stetten, F., Zengerle, R., Microfluidic platforms for lab-on-a-chip applications. Microsyst. Nanotechnol. 9783642182 (2007), 853–895.
Hall, M.M., Ilstrup, D.M., Washington, J.A. II, Comparison of three blood culture media with tryptic soy broth. J. Clin. Microbiol. 8 (1978), 299–301.
Hosokawa, K., Fujiiand, T., Endo, I., Handling of picoliter liquid samples in a poly(dimethylsiloxane)-based microfluidic device. Anal. Chem. 71 (1999), 4781–4785.
Isenberg, H.D., Sundheim, L.H., Indole reactions in bacteria. J. Bacteriol. 75 (1958), 682–690.
ISO, 2000. ISO Standards, 2000,p. 122.
King, E.J., Garner, R.J., The colorimetric determination of glucose. J. Clin. Pathol. 1 (1947), 30–33.
Kreger, B.E., Craven, D.E., Carling, P.C., McCabe, W.R., Gram-negative bacteremia. III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am. J. Med. 68 (1980), 332–343.
Kwon, H., Park, J., An, Y., Sim, J., Park, S., A smartphone metabolomics platform and its application to the assessment of cisplastin-induced kidney toxicity. Anal. Chim. Acta 845 (2014), 15–22.
Leber, A.L., Clinical Microbiology Procedures Handbook. 4th Ed., 2016, American Society for Microbiology.
Lee, D.S., Jeon, B.G., Ihm, C., Park, J.K., Jung, M.Y., A simple and smart telemedicine device for developing regions: a pocket-sized colorimetric reader. Lab Chip 11 (2011), 120–126.
Lee, J.H., Lee, J., Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34 (2010), 426–444.
Leibovici, L., Shraga, I., Drucker, M., Konigsberger, H., Samra, Z., Pitlik, S.D., The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J. Intern. Med. 244 (1998), 379–386.
Lever, A., Mackenzie, I., Sepsis: definition, epidemiology, and diagnosis. Br. Med. J. 335 (2007), 879–883.
Li, G., Young, K.D., Indole production by the trytophanse TnA in Escherichia coli is determined by the amount of exogenous tryptophan. Microbiology 159 (2013), 402–410.
Liesenfeld, O., Lehman, L., Hunfeld, K.P., Kost, G., Molecular diagnosis of sepsis: new aspects and recent developments. Eur. J. Microbiol. Immunol. 4 (2014), 1–25.
Lowrance, B.L., Reich, P., Traub, W.H., Evaluation of two spot indole reagents. Appl. Microbiol. 17 (1969), 923–924.
Mariella, R. Jr., Sample preparation: the weak link in microfluidics-based biodetection. Biomed. Micro., 10, 2008, 777.
Mateos, F., De Benito, I., Time-to-positivity in patients with Escherichia coli bacteremia. Clin. Microbiol. And. Infect. 13 (2007), 1077–1082.
Mayr, F.B., Yende, S., Angus, D.C., Epidemiology of severe sepsis. Virulence 5 (2014), 4–11.
Miller, J.M., Wright, J.W., Spot indole test: evaluation of four reagents. J. Clin. Microbiol. 15 (1982), 589–592.
Murray, P.R., Masur, H., Current approaches to the diagnosis of bacterial and fungal bloodstream infections for the ICU. Crit. Care Med. 40 (2014), 3277–3282.
Osborn, J.L., Lutz, B., Fu, E., Kauffman, P., Stevens, D.Y., Yager, P., Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10 (2010), 2659–2665.
Owen, S. ZXing. 〈 https://github.com/zxing/zxing〉.