Yao, Zhonghua ; Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Li, Z. Y.
Ji, X. F.
De Spiegeleer, Alexandre
Xiao, Y. C.
Language :
English
Title :
Observations of kinetic‐size magnetic holes in the magnetosheath
Balikhin, M. A., D. G. Sibeck, A. Runov, and S. N. Walker (2012), Magnetic holes in the vicinity of dipolarization fronts: Mirror or tearing structures, J. Geophys. Res., 117, A08229, doi:10.1029/2012JA017552.
Balikhin, M. A., R. Z. Sagdeev, S. N. Walker, O. A. Pokhotelov, D. G. Sibeck, N. Beloff, and G. Dudnikova (2009), THEMIS observations of mirror structures: Magnetic holes and instability threshold, Geophys. Res. Lett., 36, L03105, doi:10.1029/2008GL036923.
Balogh, A., M. K. Dourtghey, R. J. Forsyth, D. J. Southwood, E. J. Smith, B. T. Tsurutani, N. Murphy, and M. E. Burton (1992), Magnetic field observations during the Ulysses flyby of Jupiter, Science, 257, 1515, doi:10.1126/science.257.5076.1515.
Baumgärtel, K. (1999), Soliton approach to magnetic holes, J. Geophys. Res., 104, 28,295–28,308, doi:10.1029/1999JA900393.
Bavassano-Cattaneo, M. B., C. Basile, G. Moreno, and J. D. Richardson (1998), Evolution of mirror structures in the magnetosheath of Saturn from the bow shock to the magnetopause, J. Geophys. Res., 103, 11,961, doi:10.1029/97JA03683.
Biermann, L. (1950), Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum, Z. Naturforsch., A: Phys. Sci., 5, 65–71.
Birn, J. M., J. Raeder, Y. L. Wang, R. A. Wolf, and M. Hesse (2004), On the propagation of bubbles in the magnetotail, Ann. Geophys., 22, 1773–1786, doi:10.5194/angeo-22-1773-2004.
Burch, J. L., T. E. Moore, R. B. Torbert, and B. L. Giles (2016), Magnetospheric multiscale overview and science objectives, Space Sci. Rev., 199, 5–21, doi:10.1007/s11214-015-0164-9.
Burlaga, L. F. (1990), A heliospheric vortex street?, J. Geophys. Res., 95(A4), 4333–4336, doi:10.1029/JA095iA04p04333.
Burlaga, L. F., and J. F. Lemaire (1978), Interplanetary magnetic holes: Theory, J. Geophys. Res., 83, 5157–5160, doi:10.1029/JA083iA11p05157.
Chisham, G., S. J. Schwartz, M. A. Balikhin, and M. W. Dunlop (1999), AMPTE observations of mirror mode waves in the magnetosheath: Wavevector determination, J. Geophys. Res., 104, 437–447, doi:10.1029/1998JA900044.
Eastwood, J. P., et al. (2016), Ion-scale secondary flux ropes generated by magnetopause reconnection as resolved by MMS, Geophys. Res. Lett., 43, 4716–4724, doi:10.1002/2016GL068747.
Fazakerley, A. N., and D. J. Southwood (1994), Theory and observation of magnetosheath waves, in Solar Wind Sources of Magnetosheath Ultra-Low-Frequency Waves, Geophys. Monogr. Ser, vol. 81, edited by M. Engebretson, K. Takahashi, and M. Scholer, pp. 147–158, AGU, Washington, D. C.
Feygin, F. Z., Y. G. Khabazin, V. A. Simonenko, and A. A. Kondrat'ev (2009), Linear theory of slow drift mirror kinetic instability at finite electron temperature, Geo Magn. Aeron., 49, 30–41, doi:10.1134/S0016793209010046.
Flierl, G. R. (1987), Isolated eddy models in Geophysics, Annu. Rev. Fluid Mech., 19, 493–530, doi:10.1146/annurev.fl.19.010187.002425.
Friis-Christensen, E., M. A. McHenry, C. R. Clauer, and S. Vennerstrom (1988), Ionospheric traveling convection vortices observed near the polar cleft: A triggered response to sudden changes in the solar wind, Geophys. Res. Lett., 15, 253–256, doi:10.1029/GL015i003p00253.
Gary, S. P., and H. Karimabadi (2006), Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel, J. Geophys. Res., 111, A11224, doi:10.1029/2006JA011764.
Ge, Y. S., J. P. McFadden, J. Raeder, V. Angelopoulos, D. Larson, and O. D. Constantinescu (2011), Case studies of mirror-mode structures observed by THEMIS in the near-Earth tail during substorms, J. Geophys. Res., 116, A01209, doi:10.1029/2010JA015546.
Gedalin, M., Y. E. Lyubarski, M. Balikhin, and C. T. Russell (2001), Mirror modes: Non-Maxwellian distributions, Phys. Plasmas, 8, 2934, doi:10.1063/1.1370362.
Genot, V., E. Budnik, P. Hellinger, T. Passot, G. Belmont, P. M. Travniek, P.-L. Sulem, E. Lucek, and I. Dandouras (2009), Mirror structures above and below the linear instability threshold: Cluster observations, fluid model and hybrid simulations, Ann. Geophys., 27, 601–615, doi:10.5194/angeo-27-601-2009.
Gershman, D. J., et al. (2016), Electron dynamics in a subproton-gyroscale magnetic hole, Geophys. Res. Lett., 43, 4112–4118, doi:10.1002/2016GL068545.
Glassmeier, K.-H., M. Hönisch, and J. Untiedt (1989), Ground-based and satellite observations of traveling magnetospheric convection twin-vortices, J. Geophys. Res., 94, 2520–2528, doi:10.1029/JA094iA03p02520.
Goodrich, K. A., et al. (2016), MMS multipoint electric field observations of small-scale magnetic holes, Geophys. Res. Lett., 43, 5953–5959, doi:10.1002/2016GL069157.
Hasegawa, A. (1969), Drift mirror instability in the magnetosphere, Phys. Fluids, 12, 2642–2650, doi:10.1063/1.1692407.
Hasegawa, H., M. Fujimoto, T.-D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro (2004), Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices, Nature, 430, 755–758, doi:10.1038/nature02799.
Haynes, C. T., D. Burgess, E. Camporeale, and T. Sundberg (2015), Electron vortex magnetic holes: A nonlinear coherent plasma structure, Phys. Plasmas, 22, 012309, doi:10.1063/1.4906356.
Hellinger, P., et al. (2009), Mirror instability: From quasi-linear diffusion to coherent structures, Geophys. Res. Lett., 36, L06103, doi:10.1029/2008GL036805.
Hones, E. W., Jr., G. Paschmann, S. J. Bame, J. R. Asbridge, N. Sckopke, and K. Schindler (1978), Vortices in magnetospheric plasma flow, Geophys. Res. Lett., 5(12), 1059–1062, doi:10.1029/GL005i012p01059.
Horbury, T. S., E. A. Lucek, A. Balogh, I. Dandouras, and H. Rème (2004), Motion and orientation of magnetic field dips and peaks in the terrestrial magnetosheath, J. Geophys. Res., 109, A09209, doi:10.1029/2003JA010237.
Huang, S. Y., et al. (2017), Magnetospheric Multiscale Observations of Electron Vortex Magnetic Hole in the Turbulent Magnetosheath Plasma, Astrophys. J. Lett., 836, L27, doi:10.3847/20418213/aa5f50.
Istomin, Y. N., O. A. Pokhotelov, and M. A. Balikhin (2009), Mirror instability in space plasmas: Solitons and cnoidal waves, Phys. Plasmas, 16, 062905, doi:10.1063/1.3153553.
Ji, X.-F., X.-G. Wang, W.-J. Sun, C.-J. Xiao, Q.-Q. Shi, J. Liu, and Z.-Y. Pu (2014), EMHD theory and observations of electron solitary waves in magnetotail plasmas, J. Geophys. Res. Space Physics, 119, 4281–4289, doi:10.1002/2014JA019924.
Joy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and W. R. Paterson (2006), Mirror-mode structures in the Jovian magnetosheath, J. Geophys. Res., 111, A12212, doi:10.1029/2006JA011985.
Juusola, L., K. Andreeova, O. Amm, K. Kauristie, S. E. Milan, M. Palmroth, and N. Partamies (2010), Effects of a solar wind dynamic pressure increase in the magnetosphere and in the ionosphere, Ann. Geophys., 28(10), 1945–1959, doi:10.5194/angeo-28-1945-2010.
Kaufmann, R. L., J.-T. Horng, and A. Wolfe (1970), Large-amplitude hydromagnetic waves in the inner magnetosheath, J. Geophys. Res., 75(25), 4666–4676, doi:10.1029/JA075i025p04666.
Keiling, A., et al. (2009), Substorm current wedge driven by plasma flow vortices: THEMIS observations, J. Geophys. Res., 114, A00C22, doi:10.1029/2009JA014114.
Klimushkin, D. Y., and L. Chen (2006), Eigenmode stability analysis of drift-mirror modes in nonuniform plasmas, Ann. Geophys., 24, 2435–2439, doi:10.5194/angeo-24-2435-2006.
Korteweg, D. J., and G. de Vries (1895), On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 39, 422–443, doi:10.1080/14786449508620739.
Li, Z.-Y., W.-J. Sun, X.-G. Wang, Q.-Q. Shi, C.-J. Xiao, Z.-Y. Pu, X.-F. Ji, S.-T. Yao, and S.-Y. Fu (2016), An EMHD soliton model for small-scale magnetic holes in magnetospheric plasmas, J. Geophys. Res. Space Physics, 121, 4180–4190, doi:10.1002/2016JA022424.
Lucek, E. A., M. W. Dunlop, A. Balogh, P. Cargill, W. Baumjohann, E. Georgescu, G. Haerendel, and K.-H. Fornacon (1999), Mirror mode structures observed in the dawn-side magnetosheath by Equator-S, Geophys. Res. Lett., 26, 2159, doi:10.1029/1999GL900490.
Lui, A. T. Y., E. Spanswick, E. F. Donovan, J. Liang, W. W. Liu, O. LeContel, and Q.-G. Zong (2010), A transient narrow poleward extrusion from the diffuse aurora and the concurrent magnetotail activity, J. Geophys. Res., 115, A10210, doi:10.1029/2010JA015449.
Lyatsky, W. B., G. J. Sofko, A. V. Kustov, D. Andre, W. J. Hughes, and D. Murr (1999), Traveling convection vortices as seen by the SuperDARN HF radars, J. Geophys. Res., 104(A2), 2591–2601, doi:10.1029/1998JA900007.
Miura, A. (1984), Anomalous transport by magnetohydrodynamic Kelvin-Helmholtz instabilities in the solar wind-magnetosphere interaction, J. Geophys. Res., 89, 801–818, doi:10.1029/JA089iA02p00801.
Motoba, T., T. Kikuchi, T. Okuzawa, and K. Yumoto (2003), Dynamical response of the magnetosphere-ionosphere system to a solar wind dynamic pressure oscillation, J. Geophys. Res., 108(A5), 1206, doi:10.1029/2002JA009696.
Murr, D. L., W. J. Hughes, A. S. Rodger, E. Zesta, H. U. Frey, and A. T. Weatherwax (2002), Conjugate observations of traveling convection vortices: The field-aligned current system, J. Geophys. Res., 107(A10), 1306, doi:10.1029/2002JA009456.
Nowada, M., J.-H. Shue, C.-H. Lin, T. Sakurai, D. G. Sibeck, V. Angelopoulos, C. W. Carlson, and H.-U. Auster (2009), Alfve'nic plasma velocity variations observed at the inner edge of the low-latitude boundary layer induced by the magnetosheath mirror mode waves: A THEMIS observation, J. Geophys. Res., 114, A07208, doi:10.1029/2008JA014033.
Paschmann, G., A. N. Fazakerley, and S. J. Schwartz (1998), Moments of plasma velocity distributions, in Analysis Methods for Multi-Spacecraft Data, pp. 125–158, ISSI SA Publications Division, Noordwijk, Netherlands.
Petviashvili, V. I. (1980), Red spot of Jupiter and drift soliton in a plasma, JETP Lett., Engl. Transl., 32, 619.
Pokhotelov, O. A., and V. A. Pilipenko (1976), Contribution to the theory of the drift-mirror instability of the magnetospheric plasma, Geomagn. Aeron., 16, 296.
Pokhotelov, O. A., M. A. Balikhin, H. S. Alleyne, and O. G. Onishchenko (2000), Mirror instability with finite electron temperature effects, J. Geophys. Res., 105, 2393, doi:10.1029/1999JA900351.
Pokhotelov, O. A., M. A. Balikhin, R. A. Treumann, and V. P. Pavlenko (2001a), Drift mirror instability revisited: 1. Cold electron temperature limit, J. Geophys. Res., 106, 8455–8464, doi:10.1029/2000JA000069.
Pokhotelov, O. A., O. G. Onishchenko, M. A. Balikhin, R. A. Treumann, and V. P. Pavlenko (2001b), Drift mirror instability in space plasmas: 2. Nonzero electron temperature effects, J. Geophys. Res., 106, 13,237–13,246, doi:10.1029/2000JA000310.
Pokhotelov, O. A., O. G. Onishchenko, and L. Stenflo (2013), Physical mechanisms for electron mirror and field swelling modes, Phys. Scr., 87(6), 065,303, doi:10.1088/0031-8949/87/06/065303.
Pollock, C., et al. (2016), Fast plasma investigation for magnetospheric multiscale, Space Sci. Rev., 199, 331, doi:10.1007/s11214-016-0245-4.
Roytershteyn, V., H. Karimabadi, and A. Roberts (2015), Generation of magnetic holes in fully kinetic simulations of collisionless turbulence, Phil. Trans. R. Soc. A, 373, 20,140,151, doi:10.1098/rsta.2014.0151.
Russell, C. T., M. M. Mellott, E. J. Smith, and J. H. King (1983), Multiple spacecraft observations of interplanetary shocks: Four spacecraft determination of shock normals, J. Geophys. Res., 88(A6), 4739–4748, doi:10.1029/JA088iA06p04739.
Russell, C. T., W. Riedler, K. Schwingenshuh, and Y. Yeroshenko (1987), Mirror instability in the magnetosphere of Comet Halley, Geophys. Res. Lett., 14, 644, doi:10.1029/GL014i006p00644.
Russell, C. T., et al. (2016), The magnetospheric multiscale magnetometers, Space Sci. Rev., doi:10.1007/s11214-014-0057-3.
Shi, Q. Q., C. Shen, Z. Y. Pu, M. W. Dunlop, Q.-G. Zong, H. Zhang, C. J. Xiao, Z. X. Liu, and A. Balogh (2005), Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster, Geophys. Res. Lett., 32, L12105, doi:10.1029/2005GL022454.
Shi, Q. Q., C. Shen, M. W. Dunlop, Z. Y. Pu, Q.-G. Zong, Z. X. Liu, E. Lucek, and A. Balogh (2006), Motion of observed structures calculated from multi-point magnetic field measurements: Application to Cluster, Geophys. Res. Lett., 33, L08109, doi:10.1029/2005GL025073.
Shi, Q. Q., et al. (2009), Spatial structures of magnetic depression in the Earth's high-altitude cusp: Cluster multipoint observations, J. Geophys. Res., 114, A10202, doi:10.1029/2009JA014283.
Shi, Q. Q., et al. (2014), Solar wind pressure pulse-driven magnetospheric vortices and their global consequences, J. Geophys. Res. Space Physics, 119, 4274–4280, doi:10.1002/2013JA019551.
Sibeck, D. G., N. B. Trivedi, E. Zesta, R. B. Decker, H. J. Singer, A. Szabo, H. Tachihara, and J. Watermann (2003), Pressure-pulse interaction with the magnetosphere and ionosphere, J. Geophys. Res., 108(A2), 1095, doi:10.1029/2002JA009675.
Sonnerup, B. U. O., and M. Scheible (1998), Minimum and maximum variance analysis, in Analysis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P. W. Daly, pp. 185–220, Eur. Space Agency, Bern.
Soucek, J., E. Lucek, and I. Dandouras (2008), Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters, J. Geophys. Res., 113, A04203, doi:10.1029/2007JA012649.
Southwood, D. J., and M. G. Kivelson (1993), Mirror instability: 1. Physical mechanism of linear instability, J. Geophys. Res., 98(A6), 9181–9187, doi:10.1029/92JA02837.
Stasiewicz, K. (2004), Theory and observations of slow-mode solitons in space plasmas, Phys. Rev. Lett., 93, 125,004, doi:10.1103/PhysRevLett.93.125004.
Sun, W. J., et al. (2012), Cluster and TC-1 observation of magnetic holes in the plasma sheet, Ann. Geophys., 30, 583–595, doi:10.5194/angeo-30-583-2012.
Sundberg, T., D. Burgess, and C. T. Haynes (2015), Properties and origin of subproton-scale magnetic holes in the terrestrial plasma sheet, J. Geophys. Res. Space Physics, 120, 2600–2615, doi:10.1002/2014JA020856.
Sundkvist, D., V. Krasnoselskikh, P. K. Shukla, A. Vaivads, M. André, S. Buchert, and H. Rème (2005), In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence, Nature, 436, 825–828, doi:10.1038/nature03931.
Tian, A. M., Q. G. Zong, Y. F. Wang, Q. Q. Shi, S. Y. Fu, and Z. Y. Pu (2010), A series of plasma flow vortices in the tail plasma sheet associated with solar wind pressure enhancement, J. Geophys. Res., 115, A09204, doi:10.1029/2009JA014989.
Treumann, R. A., C. H. Jaroschek, O. D. Constantinescu, R. Nakamura, O. A. Pokhotelov, and E. Georgescu (2004), The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath, Nonlinear Processes Geophys., 11, 647–657, doi:10.5194/npg-11-647-2004.
Tsurutani, B. T., E. Smith, R. Anderson, K. Ogilvie, J. Scudder, D. Baker, and S. Bame (1982), Lion roars and nonoscillatory drift mirror waves in the magnetosheath, J. Geophys. Res., 87(A8), 6060–6072, doi:10.1029/JA087iA08p06060.
Tsurutani, B. T., I. G. Richardson, R. P. Lepping, R. D. Zwickl, D. E. Jones, and E. J. Smith (1984), Drift mirror Mode waves in the distant (X = 200 Re) magnetosheath, Geophys. Res. Lett., 11, 1102, doi:10.1029/GL011i010p01102.
Turner, J. M., L. F. Burlaga, N. F. Ness, and J. F. Lemaire (1977), Magnetic holes in the solar wind, J. Geophys. Res., 82, 1921–1924, doi:10.1029/JA082i013p01921.
Violante, L., M. B. Bavassano Cattaneo, G. Moreno, and J. D. Richardson (1995), Observations of mirror waves and plasma depletion layer upstream of Saturn's magnetopause, J. Geophys. Res., 100, 12,047, doi:10.1029/94JA02703.
Walker, S. N., M. A. Balikhin, and M. Dunlop (2002), Mirror structures in the magnetosheath: 3D structures on plane waves, Adv. Space Res., 30, 2745–2750, doi:10.1016/S0273-1177(02)80400-8.
Walker, S. N., F. Sahraoui, M. A. Balikhin, G. Belmont, J. L. Pincon, L. Rezeau, H. Alleyne, N. Cornilleau-Wehrlin, and M. Andre (2004), A comparison of wave mode identification techniques, Ann. Geophys., 22, 3021–3032, doi:10.5194/angeo-22-3021-2004.
Winterhalter, D., M. Neugebauer, B. E. Goldstein, E. J. Smith, S. J. Bame, and A. Balogh (1994), Ulysses field and plasma observations of magnetic holes in the solar wind and their relation to mirror-mode structures, J. Geophys. Res., 99, 23,371–23,381, doi:10.1029/94JA01977.
Xiao, T., et al. (2010), Cluster-C1 observations on the geometrical structure of linear magnetic holes in the solar wind at 1 AU, Ann. Geophys., 28, 1695–1702, doi:10.5194/angeo-28-1695-2010.
Xiao, T., Q. Q. Shi, and W. J. Sun (2011), Cluster observations of magnetic holes near the interplanetary current sheets at 1 AU, in 2011 30th URSI Gen. Ass. Sci. Symp., pp. 1–3.
Xiao, T., Q. Q. Shi, A. M. Tian, W. J. Sun, H. Zhang, X. C. Shen, and A. M. Du (2014), Plasma and magnetic-field characteristics of magnetic decreases in the solar wind at 1 AU: Cluster-C1 observations, Sol. Phys., 289(8), 3175–3195, doi:10.1007/s11207-014-0521-y.
Yao, S. T., et al. (2016), Propagation of small size magnetic holes in the magnetospheric plasma sheet, J. Geophys. Res. Space Physics, 121, 5510–5519, doi:10.1002/2016JA022741.
Yao, Z. H., et al. (2012), Substorm current wedge formation: THEMIS observations, J. Geophys. Res., 39, L13102, doi:10.1029/2012GL052055.
Zhang, T. L., et al. (2008), Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU, Geophys. Res. Lett., 35, L10106, doi:10.1029/2008GL033793.
Zhang, T. L., W. Baumjohann, C. T. Russell, L. K. Jian, C. Wang, J. B. Cao, M. Balikhin, X. Blanco-Cano, M. Delva, and M. Volwerk (2009), Mirror mode structures in the solar wind at 0.72 AU, J. Geophys. Res., 114, A10107, doi:10.1029/2009JA014103.
Zhao, H. Y., et al. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, 1071–1077, doi:10.1002/2015JA021646.
Zhou, X.-Z., Q.-G. Zong, J. Wang, Z. Y. Pu, X. G. Zhang, Q. Q. Shi, and J. B. Cao (2006), Multiple triangulation analysis: Application to determine the velocity of 2-D structures, Ann. Geophys., 24, 3173–3177, doi:10.5194/angeo-24-3173-2006.