magnetic holes; plasma sheet; propagation velocity; electron magnetohydrodynamics; KdV soliton; small size
Abstract :
[en] Abstract Magnetic holes (MHs), characteristic structures where the magnetic field magnitude decreases significantly, have been frequently observed in space plasmas. Particularly, small size magnetic holes (SSMHs) which the scale is less than or close to the proton gyroradius are recently detected in the magnetospheric plasma sheet. In this study of Cluster observations, by the timing method, the minimum directional difference (MDD) method, and the spatiotemporal difference (STD) method, we obtain the propagation velocity of SSMHs in the plasma flow frame. Furthermore, based on electron magnetohydrodynamics (EMHD) theory we calculate the velocity, width, and depth of the electron solitary wave and compare it to SSMH observations. The result shows a good accord between the theory and the observation.,
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Yao, S. T.
Shi, Q. Q.
Li, Z. Y.
Wang, X. G.
Tian, A. M.
Sun, W. J.
Hamrin, M.
Pitkänen, T.
Bai, S. C.
Shen, X. C.
Ji, X. F.
Pokhotelov, D.
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Balikhin, M. A., D. G. Sibeck, A. Runov, and S. N. Walker (2012), Magnetic holes in the vicinity of dipolarization fronts: Mirror or tearing structures, J. Geophys. Res., 117, A08229, doi:10.1029/2012JA017552.
Balogh, A., et al. (2001), The Cluster magnetic field investigation: Overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217, doi:10.5194/angeo-19-1207-2001.
Basu, B., and B. Coppi (1982), Field-swelling instability in anisotropic plasmas, Phys. Rev. Lett., 48, 799, doi:10.1103/PhysRevLett.48.799.
Baumgärtel, K. (1999), Soliton approach to magnetic holes, J. Geophys. Res., 104, 28,295–28,308, doi:10.1029/1999JA900393.
Baumjohann, W., and R. A. Treumann (1996), Basic Space Plasma Physics, pp. 247–283, Imperial Coll. Press, London.
Biermann, L. (1950), Über den Ursprung der Magnetfelder auf Sternen und im interstellaren Raum, Z. Naturforsch., A: Phys. Sci., 5, 65–71.
Burlaga, L. F., and J. F. Lemaire (1978), Interplanetary magnetic holes: Theory, J. Geophys. Res., 83, 5157–5160, doi:10.1029/JA083iA11p05157.
Chisham, G., S. J. Schwartz, M. A. Balikhin, and M. W. Dunlop (1999), AMPTE observations of mirror mode waves in the magnetosheath: Wavevector determination, J. Geophys. Res., 104, 437–447, doi:10.1029/1998JA900044.
Denton, R. E., B. U. Ö. Sonnerup, J. Birn, W.-. L. Teh, J. F. Drake, M. Swisdak, M. Hesse, and W. Baumjohann (2010), Test of methods to infer the magnetic reconnection geometry from spacecraft data, J. Geophys. Res., 115, A10242, doi:10.1029/2010JA015420.
Denton, R. E., B. U. Ö. Sonnerup, M. Swisdak, J. Birn, J. F. Drake, and M. Hesse (2012), Test of Shi et al. method to infer the magnetic reconnection geometry from spacecraft data: MHD simulation with guide field and antiparallel kinetic simulation, J. Geophys. Res., 117, A09201, doi:10.1029/2012JA017877.
Fazakerley, A. N., and D. J. Southwood (1994), Theory and observation of magnetosheath waves, in Solar Wind Sources of Magnetosheath Ultra- Low-Frequency Waves, Geophys. Monogr. Ser., vol. 81, edited by M. Engebretson, K. Takahashi, and M. Scholer, pp. 147–158, AGU, Washington, D. C.
Gary, S. P., and H. Karimabadi (2006), Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel, J. Geophys. Res., 111, A11224, doi:10.1029/2006JA011764.
Ge, Y. S., J. P. McFadden, J. Raeder, V. Angelopoulos, D. Larson, and O. D. Constantinescu (2011), Case studies of mirror-mode structures observed by THEMIS in the near-Earth tail during substorms, J. Geophys. Res., 116, A01209, doi:10.1029/2010JA015546.
Hasegawa, A. (1969), Drift mirror instability in the magnetosphere, Phys. Fluids, 12, 2642–2650, doi:10.1063/1.1692407.
Haynes, C. T., D. Burgess, E. Camporeale, and T. Sundberg (2015), Electron vortex magnetic holes: A nonlinear coherent plasma structure, Phys. Plasmas, 22 012309, doi:10.1063/1.4906356.
Horbury, T. S., E. A. Lucek, A. Balogh, I. Dandouras, and H. Rème (2004), Motion and orientation of magnetic field dips and peaks in the terrestrial magnetosheath, J. Geophys. Res., 109, A09209, doi:10.1029/2003JA010237.
Ji, X.-F. (2015), Magnetohydrodynamics solitons on multiple scales as possible mechanisms for observed magnetic holes PhD thesis, Peking Univ., China.
Ji, X.-F., X.-G. Wang, W.-J. Sun, C.-J. Xiao, Q.-Q. Shi, J. Liu, and Z.-Y. Pu (2014), EMHD theory and observations of electron solitary waves in magnetotail plasmas, J. Geophys. Res. Space Physics, 119, 4281–4289, doi:10.1002/2014JA019924.
Johnstone, A. D., et al. (1997), PEACE: A Plasma Electron And Current Experiment, Space Sci. Rev., 79, 351–398, doi:10.1023/A:1004938001388.
Joy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and W. R. Paterson (2006), Mirror-mode structures in the Jovian magnetosheath, J. Geophys. Res., 111, A12212, doi:10.1029/2006JA011985.
Kaufmann, R. L., J.-T. Horng, and A. Wolfe (1970), Large-amplitude hydromagnetic waves in the inner magnetosheath, J. Geophys. Res., 75(25), 4666–4676, doi:10.1029/JA075i025p04666.
Knetter, T. (2005), A new perspective of the solar wind micro-structure due to multi-point observations of discontinuities PhD thesis, Univ. zu Köln.
Knetter, T., F. M. Neubauer, T. Horbury, and A. Balogh (2004), Four-point discontinuity observations using Cluster magnetic field data: A statistical survey, J. Geophys. Res., 109, A06102, doi:10.1029/2003JA010099.
Li, Z.-Y., W.-J. Sun, X.-G. Wang, Q.-Q. Shi, C.-J. Xiao, Z.-Y. Pu, X.-F. Ji, S.-T. Yao, and S.-Y. Fu (2016), An EMHD soliton model for small-scale magnetic holes in magnetospheric plasmas, J. Geophys. Res. Space Physics, 121, doi:10.1002/2016JA022424.
Paschmann, G., A. N. Fazakerley, and S. J. Schwartz (1998), Moments of plasma velocity distributions, in Analysis Methods for Multi-Spacecraft Data, pp. 125–158, ISSI SA Publications Division, Noordwijk, Netherlands.
Pokhotelov, O. A., O. G. Onishchenko, and L. Stenflo (2013), Physical mechanisms for electron mirror and field swelling modes, Phys. Scr., 87(6065303), doi:10.1088/0031-8949/87/06/065303.
Rème, H., et al. (2001), First multispacecraft ion measurements in and near the Earth's magnetosphere with the identical Cluster ion spectrometry (CIS) experiment, Ann. Geophys., 19, 1303–1354, doi:10.5194/angeo-19-1303-2001.
Russell, C. T., M. M. Mellott, E. J. Smith, and J. H. King (1983), Multiple spacecraft observations of interplanetary shocks: Four spacecraft determination of shock normals, J. Geophys. Res., 88(A6), 4739–4748, doi:10.1029/JA088iA06p04739.
Schwartz, S. J. (1998), Shock and discontinuity normals, Mach numbers, and related parameters, in Analysis Methods for Multi-Spacecraft Data, Report, edited by G. Paschmann and P. W. Daly, pp. 249–270, International Space Science Institute ISSI, Bern, Switz.
Shi, Q. Q., C. Shen, Z. Y. Pu, M. W. Dunlop, Q.-G. Zong, H. Zhang, C. J. Xiao, Z. X. Liu, and A. Balogh (2005), Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster, Geophys. Res. Lett., 32, L12105, doi:10.1029/2005GL022454.
Shi, Q. Q., C. Shen, M. W. Dunlop, Z. Y. Pu, Q.-G. Zong, Z. X. Liu, E. Lucek, and A. Balogh (2006), Motion of observed structures calculated from multi-point magnetic field measurements: Application to Cluster, Geophys. Res. Lett., 33, L08109, doi:10.1029/2005GL025073.
Shi, Q. Q., et al. (2009a), Spatial structures of magnetic depression in the Earth's high-altitude cusp: Cluster multipoint observations, J. Geophys. Res., 114, A10202, doi:10.1029/2009JA014283.
Shi, Q. Q., et al. (2009b), Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field, J. Geophys. Res., 114, A12219, doi:10.1029/2009JA014475.
Shi, Q. Q., et al. (2013), Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times, Nat. Commun., 4, 1466, doi:10.1038/ncomms2476.
Southwood, D. J., and M. G. Kivelson (1993), Mirror instability: 1. Physical mechanism of linear instability, J. Geophys. Res., 98(A6), 9181–9187, doi:10.1029/92JA02837.
Stasiewicz, K. (2004), Theory and observations of slow-mode solitons in space plasmas, Phys. Rev. Lett., 93 125004, doi:10.1103/PhysRevLett.93.125004.
Stasiewicz, K., P. K. Shukla, G. Gustafsson, S. Buchert, B. Lavraud, B. Thidé, and Z. Klos (2003), Slow magnetosonic solitons detected by the Cluster spacecraft, Phys. Rev. Lett., 90 085002, doi:10.1103/PhysRevLett.90.085002.
Sun, W. J., et al. (2010), Statistical research on the motion properties of the magnetotail current sheet: Cluster observations, Sci. China Tech. Sci., 53, 1732–1738, doi:10.1007/s11431-010-3153-y.
Sun, W. J., et al. (2012), Cluster and TC-1 observation of magnetic holes in the plasma sheet, Ann. Geophys., 30, 583–595, doi:10.5194/angeo-30-583-2012.
Sundberg, T., D. Burgess, and C. T. Haynes (2015), Properties and origin of subproton-scale magnetic holes in the terrestrial plasma sheet, J. Geophys. Res. Space Physics, 120, 2600–2615, doi:10.1002/2014JA020856.
Tsurutani, B. T., E. Smith, R. Anderson, K. Ogilvie, J. Scudder, D. Baker, and S. Bame (1982), Lion roars and nonoscillatory drift mirror waves in the magnetosheath, J. Geophys. Res., 87(A8), 6060–6072, doi:10.1029/JA087iA08p06060.
Tsurutani, B. T., F. L. Guarnieri, E. Echer, G. S. Lakhina, and O. P. Verkhoglyadova (2009), Magnetic decrease formation from <1 AU to 5 AU: Corotating interaction region reverse shocks, J. Geophys. Res., 114, A08105, doi:10.1029/2008JA013927.
Tsurutani, B. T., G. S. Lakhina, O. P. Verkhoglyadova, E. Echer, F. L. Guarnieri, Y. Narita, and D. O. Constantinescu (2011), Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: Differences and distinguishing features, J. Geophys. Res., 116, A02103, doi:10.1029/2010JA015913.
Turner, J. M., L. F. Burlaga, N. F. Ness, and J. F. Lemaire (1977), Magnetic holes in the solar wind, J. Geophys. Res., 82, 1921–1924, doi:10.1029/JA082i013p01921.
Wendel, D. E., and M. L. Adrian (2013), Current structure and nonideal behavior at magnetic null points in the turbulent magnetosheath, J. Geophys. Res. Space Physics, 118, 1571–1588, doi:10.1002/jgra.50234.
Winterhalter, D., M. Neugebauer, B. E. Goldstein, E. J. Smith, S. J. Bame, and A. Balogh (1994), Ulysses field and plasma observations of magnetic holes in the solar wind and their relation to mirror-mode structures, J. Geophys. Res., 99, 23,371–23,381, doi:10.1029/94JA01977.
Xiao, T., et al. (2010), Cluster-C1 observations on the geometrical structure of linear magnetic holes in the solar wind at 1 AU, Ann. Geophys., 28, 1695–1702, doi:10.5194/angeo-28-1695-2010.
Xiao, T., Q. Q. Shi, and W. J. Sun (2011), Cluster observations of magnetic holes near the interplanetary current sheets at 1 AU, in 2011 30th URSI Gen. Ass. Sci. Symp., pp. 1–3.
Xiao, T., Q. Q. Shi, A. M. Tian, W. J. Sun, H. Zhang, X. C. Shen, and A. M. Du (2014), Plasma and magnetic-field characteristics of magnetic decreases in the solar wind at 1 AU: Cluster-C1 observations, Sol. Phys., 289(8), 3175–3195, doi:10.1007/s11207-014-0521-y.
Xiao, T., et al. (2015), Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations, J. Geophys. Res. Space Physics, 120, 4142–4154, doi:10.1002/2015JA021013.
Zhang, T. L., et al. (2008), Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU, Geophys. Res. Lett., 35, L10106, doi:10.1029/2008GL033793.
Zhang, T. L., W. Baumjohann, C. T. Russell, L. K. Jian, C. Wang, J. B. Cao, M. Balikhin, X. Blanco-Cano, M. Delva, and M. Volwerk (2009), Mirror mode structures in the solar wind at 0.72 AU, J. Geophys. Res., 114, A10107, doi:10.1029/2009JA014103.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.