[en] Context. Early observations of comet C/2016 R2 (PanSTARRS) have shown that the composition of this comet is very peculiar. Radio observations have revealed a CO-rich and HCN-poor comet and an optical coma dominated by strong emission bands of CO[SUP]+[/SUP] and, more surprisingly, N[SUB]2[/SUB][SUP]+[/SUP]. <BR /> Aims: The strong detection of N[SUB]2[/SUB][SUP]+[/SUP] in the coma of C/2016 R2 provided an ideal opportunity to measure the [SUP]14[/SUP]N/[SUP]15[/SUP]N isotopic ratio directly from N[SUB]2[/SUB][SUP]+[/SUP] for the first time, and to estimate the N[SUB]2[/SUB]/CO ratio, which is an important diagnostic to constrain formation models of planetesimals, in addition to the more general study of coma composition. <BR /> Methods: We obtained high resolution spectra of the comet in February 2018 when it was at 2.8 au from the Sun. We used the UVES spectrograph of the European Southern Observatory Very Large Telescope, complemented with narrowband images obtained with the TRAPPIST telescopes. <BR /> Results: We detect strong emissions from the N[SUB]2[/SUB][SUP]+[/SUP] and CO[SUP]+[/SUP] ions, but also CO[SUB]2[/SUB][SUP]+[/SUP], emission lines from the CH radical, and much fainter emissions of the CN, C[SUB]2[/SUB], and C[SUB]3[/SUB] radicals that were not detected in previous observations of this comet. We do not detect OH or H[SUB]2[/SUB]O[SUP]+[/SUP], and we derive an upper limit of the H[SUB]2[/SUB]O[SUP]+[/SUP]/CO[SUP]+[/SUP] ratio of 0.4, implying that the comet has a low water abundance. We measure a N[SUB]2[/SUB][SUP]+[/SUP]/CO[SUP]+[/SUP] ratio of 0.06 ± 0.01. The non-detection of NH[SUB]2[/SUB] indicates that most of the nitrogen content of the comet is in N[SUB]2[/SUB]. Together with the high N[SUB]2[/SUB][SUP]+[/SUP]/CO[SUP]+[/SUP] ratio, this could indicate a low formation temperature of the comet or that the comet is a fragment of a large differentiated Kuiper Belt object. The CO[SUB]2[/SUB][SUP]+[/SUP]/CO[SUP]+[/SUP] ratio is 1.1 ± 0.3. We do not detect [SUP]14[/SUP]N[SUP]15[/SUP]N[SUP]+[/SUP] lines and can only put a lower limit on the [SUP]14[/SUP]N/[SUP]15[/SUP]N ratio (measured from N[SUB]2[/SUB][SUP]+[/SUP]) of about 100, which is compatible with measurements of the same isotopic ratio for NH[SUB]2[/SUB] and CN in other comets. Finally, in addition to the [OI] and [CI] forbidden lines, we detect for the first time the forbidden nitrogen lines [NI] doublet at 519.79 and 520.03 nm in the coma of a comet.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Opitom, C.; ESO (European Southern Observatory), Alonso de Cordova 3107, Vitacura, Santiago, Chile
Hutsemekers, Damien ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Jehin, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa)
Rousselot, P.; Institut UTINAM-UMR CNRS 6213, Observatoire des Sciences de l'Univers THETA, University of Franche-Comté, BP 1615, 25010, Besançon Cedex, France
Manfroid, Jean ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Moulane, Youssef ; STAR Institute, University of Liège, Allée du 6 Août 19c, 4000 Liège, Belgium ; Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco
Gillon, Michaël ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Exotic
Benkhaldoun, Z.; Oukaimeden Observatory, High Energy Physics and Astrophysics Laboratory, Cadi Ayyad University, Marrakech, Morocco)
Language :
English
Title :
High resolution optical spectroscopy of the N2-rich comet C/2016 R2 (PanSTARRS)
Opitom, C., Jehin, E., Manfroid, J., et al. 2015, A&A, 574, A38
Owen, T., & Bar-Nun, A. 1995, Icarus, 116, 215
Pozuelos, F. J., Jehin, E., Moulane, Y., et al. 2018, A&A, 615, A154
Rees, M. H., & Romick, G. J. 1985, J. Geophys. Res., 90, 9871
Rein, H., & Liu, S.-F. 2012, A&A, 537, A128
Rein, H., & Spiegel, D. S. 2015, MNRAS, 446, 1424
Rein, H., & Tamayo, D. 2015, MNRAS, 452, 376
Rousselot, P., Jehin, E., Manfroid, J., & Hutsemékers, D. 2012, A&A, 545, A24
Rubin, M., Altwegg, K., Balsiger, H., et al. 2015, Science, 348, 232
Sharpee, B. D., Slanger, T. G., Cosby, P. C., & Huestis, D. L. 2005, Geophys. Res. Lett., 32, L12106
Shinnaka, Y., Kawakita, H., Jehin, E., et al. 2016, MNRAS, 462, S195
Singh, P. D., D'Ealmeida, A. A., & Huebner, W. F. 1991, Icarus, 90, 74
Smette, A., Sana, H., Noll, S., et al. 2015, A&A, 576, A77
Souchay, J., & Dvorak, R. 2010, Dynamics of Small Solar System Bodies and Exoplanets (Berlin, Heidelberg: Springer)
Weryk, R., & Wainscoat, R. 2016, Central Bureau Electronic Telegrams, 4318
Wierzchos, K., & Womack, M. 2017, Central Bureau Electronic Telegrams, 4464
Wierzchos, K., & Womack, M. 2018, AJ, 156, 34
Wiese, W. L., Smith, M. W., & Glennon, B. M. 1966, Atomic transition probabilities. Hydrogen through Neon. A critical data compilation (Washington, DC: U.S. Government Printing Office)
Womack, M., Wyckoff, S., & Ziurys, L. M. 1992, ApJ, 401, 728
Wood, R. H., & Dieke, G. 1938, JCP, 6, 734
Wyckoff, S., & Theobald, J. 1989, Adv. Space Res., 9, 157