Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Ahmadi, N., Germaschewski, K., & Raeder, J. (2016). Effects of electron temperature anisotropy on proton mirror instability evolution. Journal of Geophysical Research: Space Physics, 121, 5350–5365. https://doi.org/10.1002/2016JA022429
Ahmadi, N., Germaschewski, K., & Raeder, J. (2017). Simulation of observed magnetic holes in the magnetosheath. Physics of Plasmas, 24, 122,121. https://doi.org/10.1063/1.5003017
Balikhin, M. A., Pokhotelov, O. A., Walker, S. N., Boynton, R. J., & Beloff, N. (2010). Mirror mode peaks: THEMIS observations versus theories. Geophysical Research Letters, 37, L05104. https://doi.org/10.1029/2009GL042090
Balikhin, M. A., Sagdeev, R. Z., Walker, S. N., Pokhotelov, O. A., Sibeck, D. G., Beloff, N., & Dudnikova, G. (2009). THEMIS observations of mirror structures: Magnetic holes and instability threshold. Geophysical Research Letters, 36, L03105. https://doi.org/10.1029/2008GL036923
Balikhin, M. A., Sibeck, D. G., Runov, A., & Walker, S. N. (2012). Magnetic holes in the vicinity of dipolarization fronts: Mirror or tearing structures. Journal of Geophysical Research, 117, A08229. https://doi.org/10.1029/2012JA017552
Burch, J. L., Moore, T. E., Torbert, R. B., & Giles, B. L. (2015). Magnetospheric multiscale overview and science objectives. Space Science Reviews, 1–17. https://doi.org/10.1007/s11214-015-0164-9
Burlaga, L. F., Ness, N. F., & Acũna, M. H. (2006). Trains of magnetic holes and magnetic humps in the heliosheath. Geophysical Research Letters, 33, L21106. https://doi.org/10.1029/2006GL027276
Califano, F., Hellinger, P., Kuznetsov, E., Passot, T., Sulem, P. L., & Trávnıcek, P. M. (2008). Nonlinear mirror mode dynamics: Simulations and modeling. Journal of Geophysical Research, 113, A08219. https://doi.org/10.1029/2007JA012898
Chisham, G., Burgess, D., Schwartz, S. J., & Dunlop, M. W. (1998). Observations of electron distributions in magnetosheath mirror mode waves. Journal of Geophysical Research, 103, 26,765–26,774. https://doi.org/10.1029/98JA02620
Feygin, F. Z., Khabazin, Y. G., Simonenko, V. A., & Kondrat'ev, A. A. (2009). Linear theory of slow drift mirror kinetic instability at finite electron temperature. Geomagnetism and Aeronomy, 49, 30–41
Fu, H. S., Khotyaintsev, Y. V., André, M., & Vaivads, A. (2011). Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophysical Research Letters, 38, L16104. https://doi.org/10.1029/2011GL048528
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., Sergeev, V. A., Huang, S. Y., et al. (2012). Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. Journal of Geophysical Research, 117, A12221. https://doi.org/10.1029/2012JA018141
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., Retinò, A., & André, M. (2013). Energetic electron acceleration by unsteady magnetic reconnection. Nature Physics, 9, 426–430. https://doi.org/10.1038/NPHYS2664
Gary, S. P., & Karimabadi, H. (2006). Linear theory of electron temperature anisotropy instabilities: Whistler, mirror, and Weibel. Journal of Geophysical Research, 111, A11224. https://doi.org/10.1029/2006JA011764
Gedalin, M., Lyubarski, Y. E., Balikhin, M., & Russell, C. T. (2001). Mirror modes: Non-Maxwellian distributions. Physics of Plasmas, 8, 2934
Genot, V., Budnik, E., Hellinger, P., Passot, T., Belmont, G., Travniek, P. M., et al. (2009). Mirror structures above and below the linear instability threshold: Cluster observations, fluid model and hybrid simulations. Annales de Geophysique, 27, 601–615
Hasegawa, A. (1969). Drift mirror instability in the magnetosphere. Physics of Fluids, 12, 2642–2650. https://doi.org/10.1063/1.1692407
Hellinger, P., Kuznetsov, E. A., Passot, T., Sulem, P. L., & Trávníček, P. M. (2009). Mirror instability: From quasi-linear diffusion to coherent structures. Geophysical Research Letters, 36, L06103. https://doi.org/10.1029/2008GL036805
Horbury, T. S., Lucek, E. A., Balogh, A., Dandouras, I., & Re'me, H. (2004). Motion and orientation of magnetic field dips and peaks in the terrestrial magnetosheath. Journal of Geophysical Research, 109, A09209. https://doi.org/10.1029/2003JA010237
Istomin, Y. N., Pokhotelov, O. A., & Balikhin, M. A. (2009). Nonzero electron temperature effects in nonlinear mirror modes. Physics of Plasmas, 16, 122901
Ji, X.-F., Wang, X.-G., Sun, W.-J., Xiao, C.-J., Shi, Q.-Q., Liu, J., & Pu, Z.-Y. (2014). EMHD theory and observations of electron solitary waves in magnetotail plasmas. Journal of Geophysical Research: Space Physics, 119, 4281–4289. https://doi.org/10.1002/2014JA019924
Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., & Paterson, W. R. (2006). Mirror-mode structures in the Jovian magnetosheath. Journal of Geophysical Research, 111, A12212. https://doi.org/10.1029/2006JA011985
Kivelson, M. G., & Southwood, D. J. (1996). Mirror instability II: The mechanism of nonlinear saturation. Journal of Geophysical Research, 101, 17,365–17,372. https://doi.org/10.1029/96JA01407
Klimushkin, D. Y., & Chen, L. (2006). Eigenmode stability analysis of drift-mirror modes in nonuniform plasmas. Annales de Geophysique, 24, 2435–2439. https://doi.org/10.5194/angeo-24-2435-2006
Konjukov, M. V., & Terietskij, J. P. (1958). On the theory of the linear betatron [J]. IL Nuovo Cimento, 9(6), 930–941
Li, Z.-Y., Sun, W.-J., Wang, X.-G., Shi, Q.-Q., Xiao, C.-J., Pu, Z.-Y., et al. (2016). An EMHD soliton model for small-scale magnetic holes in magnetospheric plasmas. Journal of Geophysical Research: Space Physics, 121, 4180–4190. https://doi.org/10.1002/2016JA022424
Liu, C. M., Fu, H. S., Cao, J. B., Xu, Y., Yu, Y. Q., Kronberg, E. A., & Daly, P. W. (2017). Rapid pitch angle evolution of suprathermal electrons behind dipolarization fronts. Geophysical Research Letters, 44, 10,116–10,124. https://doi.org/10.1002/2017GL075007
Northrop, T. G. (1963). Adiabatic charged-particle motion. Reviews of Geophysics, 1(3), 283–304. https://doi.org/10.1029/RG001i003p00283
Pantellini, F. G. E. (1998). A model of the formation of stable non-propagating magnetic structures in the solar wind based on the nonlinear mirror instability. Journal of Geophysical Research, 103, 4789–4798. https://doi.org/10.1029/97JA02384
Pantellini, F. G. E., & Schwartz, S. J. (1995). Electron temperature effects in the linear proton mirror instability. Journal of Geophysical Research, 100, 3539–3549. https://doi.org/10.1029/94JA02572
Pokhotelov, O. A., Balikhin, M. A., Alleyne, S. C. K., & Onishchenko, O. G. (2000). Mirror instability with finite electron temperature effects. Journal of Geophysical Research, 105(A2), 2393–2401. https://doi.org/10.1029/1999JA900351
Pokhotelov, O. A., Onishchenko, O. G., & Stenflo, L. (2013). Physical mechanisms for electron mirror and field swelling modes. Physica Scripta, 87(6), 065303
Pokhotelov, O. A., & Pilipenko, V. A. (1976). Contribution to the theory of the drift-mirror instability of the magnetospheric plasma. Geomagnetism and Aeronomy, 16, 296
Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., et al. (2016). Fast plasma investigation for magnetospheric multiscale. Space Science Reviews, 199(1-4), 331–406. https://doi.org/10.1007/s11214-016-0245-4
Porazik, P., & Johnson, J. R. (2013a). Gyrokinetic particle simulation of nonlinear evolution of mirror instability. Journal of Geophysical Research: Space Physics. 118, 7211–7218. https://doi.org/10.1002/2013JA019308
Porazik, P., & Johnson, J. R. (2013b). Linear dispersion relation for the mirror instability in the context of the gyrokinetic theory. Physics of Plasmas, 20, 104,501
Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., et al. (2016). The Magnetospheric Multiscale magnetometers. Space Science Reviews, 199(1-4), 189–256. https://doi.org/10.1007/s11214-014-0057-3
Russell, C. T., Mellott, M. M., Smith, E. J., & King, J. H. (1983). Multiple spacecraft observations of interplanetary shocks: Four spacecraft determinations of shock normals. Journal of Geophysical Research, 88, 4739–4748
Russell, C. T., Riedler, W., Schwingenshuh, K., & Yeroshenko, Y. (1987). Mirror instability in the magnetosphere of comet Halley. Geophysical Research Letters, 14, 644
Shi, Q. Q., Pu, Z. Y., Soucek, J., Zong, Q.-G., Fu, S. Y., Xie, L., et al. (2009). Spatial structures of magnetic depression in the Earth's high-altitude cusp: Cluster multipoint observations. Journal of Geophysical Research, 114, A10202. https://doi.org/10.1029/2009JA014283
Shi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong, Q.-G., Liu, Z. X., et al. (2006). Motion of observed structures calculated from multi-point magnetic field measurements: Application to Cluster. Geophysical Research Letters, 33, L08109. https://doi.org/10.1029/2005GL025073
Shi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q.-G., Zhang, H., et al. (2005). Dimensional analysis of observed structures using multipoint magnetic field measurements: Application to Cluster. Geophysical Research Letters, 32, L12105. https://doi.org/10.1029/2005GL022454
Soucek, J., & Escoubet, C. P. (2011). Cluster observations of trapped ions interacting with magnetosheath mirror modes. Annales Geophysicae, 29, 1049–1060. https://doi.org/10.5194/angeo-29-1049-2011
Soucek, J., Lucek, E., & Dandouras, I. (2008). Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters. Journal of Geophysical Research, 113, A04203. https://doi.org/10.1029/2007JA012649
Southwood, D. J., & Kivelson, M. G. (1993). Mirror instability. I—Physical mechanism of linear instability. Journal of Geophysical Research, 98, 9181–9187. https://doi.org/10.1029/92JA02837
Treumann, R. A., Jaroschek, C. H., Constantinescu, O. D., Nakamura, R., Pokhotelov, O. A., & Georgescu, E. (2004). The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath. Nonlinear Processes in Geophysics, 11, 647–657
Tsurutani, B. T., Richardson, I. G., Lepping, R. P., Zwickl, R. D., Jones, D. E., & Smith, E. J. (1984). Drift mirror mode waves in the distant (X∼200 Re) magnetosheath. Geophysical Research Letters, 11, 1102
Tsurutani, B. T., Southwood, D. J., Smith, E. J., & Balogh, A. (1992). Nonlinear magnetosonic waves and mirror mode structures in the March 1991 ULYSSES interplanetary event. Geophysical Research Letters, 19, 1267–1270. https://doi.org/10.1029/92GL00782
Xiao, T., Shi, Q. Q., Tian, A. M., Sun, W. J., Zhang, H., Shen, X. C., & Du, A. M. (2014). Plasma and magnetic-field characteristics of magnetic decreases in the solar wind at 1 AU: Cluster-C1 observations. Solar Physics, 289(8), 3175–3195
Yao, S., He, J.-S., Tu, C.-Y., Wang, L.-H., & Marsch, E. (2013). Small-scale pressure-balanced structures driven by mirror-mode waves in the solar wind. The Astrophysical Journal, 776, 94. https://doi.org/10.1088/0004-637X/776/2/94
Yao, S. T., Shi, Q. Q., Guo, R. L., Yao, Z. H., Tian, A. M., Degeling, A. W., et al. (2018). Magnetospheric Multiscale observations of electron scale magnetic peak. Geophysical Research Letters, 45, 527–537. https://doi.org/10.1002/2017GL075711
Yao, S. T., Shi, Q. Q., Li, Z. Y., Wang, X. G., Tian, A. M., Sun, W. J., et al. (2016). Propagation of small size magnetic holes in the magnetospheric plasma sheet. Journal of Geophysical Research: Space Physics, 121, 5510–5519. https://doi.org/10.1002/2016JA022741
Yao, S. T., Wang, X. G., Shi, Q. Q., Pitkänen, T., Hamrin, M., Yao, Z. H., et al. (2017). Observations of kinetic-size magnetic holes in the magnetosheath. Journal of Geophysical Research: Space Physics, 122, 1999–2000. https://doi.org/10.1002/2016JA023858
Zhang, T. L., Russell, C. T., Baumjohann, W., Jian, L. K., Balikhin, M. A., Cao, J. B., et al. (2008). Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU. Geophysical Research Letters, 35, L10106. https://doi.org/10.1029/2008GL033793