Polymorphisms in cyanogenic glucoside and cyano-aminoacid content in natural accessions of common vetch (Vicia sativa L.) and selection for improved agronomic performance
Aouida, Marwa; Rook, Fred; Maimann, Alexandra Biancaet al.
[en] Common vetch (Vicia sativa L.) is an important annual forage legume. It is used as a
cover crop, green manure, pasture legume and for silage and hay production. Its
seeds can be used as a source of highly digestible protein and minerals in animal diets.
However, their utilization as a feedstuff for monogastric animals is hindered by the
fact that the seeds contain cyanogenic antinutritional factors that reduce their palatability.
An effective utilization of V. sativa seeds as a successful monogastric feed
stuff requires selection for higher protein availability and minimization of the cyanogenic
antinutritional factors content. In this study, we selected one natural accession
named Mjez Ibeb, from a collection of 25 accessions and cultivars, based on its superior
agronomic performance and its naturally occurring genetic variation for cyanogenic
traits. We investigated the genetic variation that exists for the cyanogenesis
trait in more detail and analysed the seeds of 133 lines derived from accession Mjez
lbeb. Of these, 40 naturally polymorphic lines that showed deficiencies in cyanogenesis
and cyano‐amino acid content, were subsequently selected for detailed chemical
analysis. Cyanogenic glucosides and cyano‐amino acid concentrations varied widely
in the 40 lines. Multivariate analysis was performed and three lines (L16, L21, L18) with
low content of cyanogenic compounds were identified.
Fauconnier, Marie-Laure ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Jebara, Moez
Language :
English
Title :
Polymorphisms in cyanogenic glucoside and cyano-aminoacid content in natural accessions of common vetch (Vicia sativa L.) and selection for improved agronomic performance
Abbo, S., Lev-Yadun, S., Heun, M., & Gopher, A. (2013). On the “lost” crops of the neolithic Near East. Journal of Experimental Botany, 64(4), 815–822. https://doi.org/10.1093/jxb/ers373
Abbo, S., Mesghenna, Y. T., & Van Oss, H. (2011). Interspecific hybridization in wild Cicer sp. Plant Breeding, 130(2), 150–155. https://doi.org/10.1111/j.1439-0523.2010.01838.x
Abd El-Moneim, A. M. (1993). Selection for non-shattering common vetch, Vicia sativa L. Plant Breeding, 110(2), 168–171. https://doi.org/10.1111/j.1439-0523.1993.tb01231.x
Ahn, Y. O., Saino, H., Mizutani, M., Shimizu, B. I., & Sakata, K. (2007). Vicianin hydrolase is a novel cyanogenic b-glycosidase specific to b-vicianoside (6-O-a-L-arabinopyranosyl-b-D-Glucopyranoside) in seeds of Vicia angustifolia. Plant and Cell Physiology, 48(7), 938–947. https://doi.org/10.1093/pcp/pcm065
Ballhorn, D. J., Heil, M., & Lieberei, R. (2006). Phenotypic plasticity of cyanogenesis in lima bean Phaseolus lunatus-activity and activation of beta-glucosidase. Journal of chemical ecology, 32(2), 261–275. https://doi.org/10.1007/s10886-005-9001-z
Ballhorn, D. J., Kautz, S., Heil, M., & Hegeman, A. D. (2009). Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defence in nature. PLoS ONE, 4(5), 1–7. https://doi.org/10.1371/journal.pone.0005450
Blomstedt, C. K., Gleadow, R. M., O’Donnell, N., Naur, P., Jensen, K., Laursen, T., … Neale, A. D. (2012). A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnology Journal, 10(1), 54–66. https://doi.org/10.1111/j.1467-7652.2011.00646.x
Burow, M., & Halkier, B. A. (2017). How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study. Current Opinion in Plant Biology, 38, 142–147. https://doi.org/10.1016/j.pbi.2017.04.009
Chowdhury, D. M. S., Rathjen, J. M., Tate, M. E., & McDonald, G. (2004). Genetics of colour traits in common vetch (Vicia sativa L.). Euphytica, 136(3), 249–255. https://doi.org/10.1023/B:EUPH.0000032703.02526.6d
Clausen, M., Kannangara, R. M., Olsen, C. E., Blomstedt, C. K., Gleadow, R. M., Jørgensen, K., … Møller, B. L. (2015). The bifurcation of the cyanogenic glucoside and glucosinolate biosynthetic pathways. Plant Journal, 84(3), 558–573. https://doi.org/10.1111/tpj.13023
Darre, M. J., Minior, D. N., Tatake, J. G., & Ressler, C. (1998). Nutritional evaluation of detoxified and raw common vetch seed (Vicia Sativa L.) using diets of broilers. Journal of Agricultural & Food Chemistry, 46(11), 4675–4679. https://doi.org/10.1021/jf980931i
Dong, R., Jahufer, M., Dong, D., Wang, Y., & Liu, Z. (2016). Characterisation of the morphological variation for seed traits among 537 germplasm accessions of common vetch (Vicia sativa L.) using digital image analysis. New Zealand Journal of Agricultural Research, 59(4), 422–435. https://doi.org/10.1080/00288233.2016.1229682
Feigl, F., & Anger, V. (1966). Replacement of benzidine by copper ethylacetoacetate and tetra base as a spot-test reagent for hydrogen cyanide and cyanogen. Analyst, 91, 282–284.
Firincioglu, H. K., Erbektas, E., Dogruyol, L., Mutlu, Z., Ünal, S., & Karakurt, E. (2009). Phenotypic variation of Autumn and Spring-sown vetch (Vicia sativa ssp.) populations in central Turkey. Spanish Journal of Agricultural Research, 7(3), 596. https://doi.org/10.5424/sjar/2009073-444
Firincioǧlu, H. K., Tate, M., Ünal, S., Doǧruyol, L., & Özcan, I. (2007). A selection strategy for low toxin vetches (Vicia sativa spp.). Turkish Journal of Agriculture and Forestry, 31(5), 303–311.
Ford, R., Maddeppungeng, A. M., & Taylor, P. W. J. (2009). Vetch. In C. Kole & T. C. Hall (Eds.), Compendium of transgenic crop plants. Oxford: John Wiley. https://doi.org/10.1002/9781405181099.k0309
Fowden, L., & Bell, E. A. (1965). Cyanide metabolism by seedlings. Nature, 206(4979), 110–112. https://doi.org/10.1038/206110a0
Huang, Y. F., Gao, X. L., Nan, Z. B., & Zhang, Z. X. (2017). Potential value of the common vetch (Vicia sativa L.) as an animal feedstuff: A review. Journal of Animal Physiology and Animal Nutrition, 101, 1–17. https://doi.org/10.1111/jpn.12617
Kooyers, N. J., Gage, L. R., Al-Lozi, A., & Olsen, K. M. (2014). Aridity shapes cyanogenesis cline evolution in white clover (Trifolium repens L.). Molecular Ecology, 23(5), 1053–1070. https://doi.org/10.1111/mec.12666
Kooyers, N. J., & Olsen, K. M. (2013). Searching for the bull’s eye: Agents and targets of selection vary among geographically disparate cyanogenesis clines in white clover (Trifolium repens L.). Heredity, 111(6), 495–504. https://doi.org/10.1038/hdy.2013.71
Machingura, M., Salomon, E., Jez, J. M., & Ebbs, S. D. (2016). The β-cyanoalanine synthase pathway: Beyond cyanide detoxification. Plant Cell and Environment, 39, 2329–2341. https://doi.org/10.1111/pce.12755
Makkar, H. P. S., Tran, G., Heuzé, V., Giger-Reverdin, S., Lessire, M., Lebas, F., & Ankers, P. (2016). Seaweeds for livestock diets: A review. Animal Feed Science and Technology, 212, 1–17. https://doi.org/10.1016/j.anifeedsci.2015.09.018
Megías, C., Cortés-Giraldo, I., Girón-Calle, J., Vioque, J., & Alaiz, M. (2014). Determination of β-cyano-L-alanine, γ-glutamyl-β-cyano-L-alanine, and common free amino acids in Vicia sativa (Fabaceae) seeds by reversed-phase high-performance liquid chromatography. Journal of Analytical Methods in Chemistry, 2014, 1–5. https://doi.org/10.1155/2014/409089
Olsen, K. M., Kooyers, N. J., & Small, L. L. (2014). Adaptive gains through repeated gene loss: Parallel evolution of cyanogenesis polymorphisms in the genus Trifolium (Fabaceae). Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1648), 20130347–20130347. https://doi.org/10.1098/rstb.2013.0347
Picmanova, M., Neilson, E. H., Motawia, M. S., Olsen, C. E., Agerbirk, N., Gray, C. J., … Bjarnholt, N. (2015). A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. The Biochemical Journal, https://doi.org/10.1042/BJ20150390
Ressler, C., Nigam, S. N., & Giza, Y. H. (1969). Toxic principle in vetch. Isolation and identification of gamma-L-glutamyl-L-beta-cyanoalanine from common vetch seeds. Distribution in some legumes. Journal of the American Chemical Society, 91(10), 2758–2765. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=5784950
Ressler, C., & Tatake, J. G. (2001). Vicianin, prunasin, and β-cyanoalanine in common vetch seed as sources of urinary thiocyanate in the rat. Journal of Agricultural and Food Chemistry, 49(10), 5075–5080. https://doi.org/10.1021/jf010343w
Sánchez-Pérez, R., Jørgensen, K., Motawia, M. S., Dicenta, F., & Møller, B. L. (2009). Tissue and cellular localization of individual β -glycosidases using a substrate-specific sugar reducing assay. Plant Journal, 60, 894–906. https://doi.org/10.1111/j.1365-313X.2009.03997.x
Sanchez-Perez, R., Jorgensen, K., Olsen, C. E., Dicenta, F., & Moller, B. L. (2008). Bitterness in almonds. Plant Physiology, 146(3), 1040–1052. https://doi.org/10.1104/pp.107.112979
Smýkal, P., Coyne, C. J., Ambrose, M. J., Maxted, N., Blair, M. W., Berger, J., … Besharat, N. (2017). Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34(1–3), 43–104. https://doi.org/10.1080/07352689.2014.897904
Sørensen, M., Neilson, E. H. J., & Møller, B. L. (2017). Oximes: Unrecognized chameleons in general and specialized plant metabolism. Molecular Plant, 11(1), 95–117. https://doi.org/10.1016/j.molp.2017.12.014
Takos, A., Lai, D., Mikkelsen, L., Abou Hachem, M., Shelton, D., Motawia, M. S., … Rook, F. (2010). Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. The Plant Cell, 22(5), 1605–1619. https://doi.org/10.1105/tpc.109.073502
Takos, A. M., Knudsen, C., Lai, D., Kannangara, R., Mikkelsen, L., Motawia, M. S., … Rook, F. (2011). Genomic clustering of cyanogenic glucoside biosynthetic genes aids their identification in Lotus japonicus and suggests the repeated evolution of this chemical defence pathway. The Plant Journal: for Cell and Molecular Biology, 68(2), 273–286. https://doi.org/10.1111/j.1365-313X.2011.04685.x
Tate, M. E., Rathjen, J., Delaere, I., & Enneking, D. (1999). Covert trade in toxic vetch continues. Nature, 400(6741), 207. https://doi.org/10.1038/22198
Yamaguchi, T., Yamamoto, K., & Asano, Y. (2014). Identification and characterization of CYP79D16 and CYP71AN24 catalyzing the first and second steps in l-phenylalanine-derived cyanogenic glycoside biosynthesis in the Japanese apricot, Prunus mume Sieb. et Zucc. Plant Molecular Biology, 86(1–2), 215–223. https://doi.org/10.1007/s11103-014-0225-6
Yi, H., Juergens, M., & Jez, J. M. (2012). Structure of soybean β-cyanoalanine synthase and the molecular basis for cyanide detoxification in plants. The Plant Cell, 24(6), 2696–2706. https://doi.org/10.1105/tpc.112.098954