Article (Scientific journals)
Simulation of complex impact problems with implicit time algorithms: Application to a turbo-engine blade loss problem
Noels, Ludovic; Stainier, Laurent; Ponthot, Jean-Philippe
2005In International Journal of Impact Engineering, 32 (1-4), p. 358–386
Peer Reviewed verified by ORBi
 

Files


Full Text
2005_IJIE_NumericalDissipation.pdf
Author postprint (1.9 MB) Creative Commons License - Attribution, Non-Commercial, No Derivative
(c) Elsevier Ltd. All rights reserved.
Download
Annexes
2004_Trondheim.pdf
Publisher postprint (20.08 MB)
Presentation Trondheim 2004
Request a copy
2004_Trondheim.ppt
Publisher postprint (3.99 MB)
Presentation Trondheim 2004
Request a copy
aube_dd.avi
Publisher postprint (7.75 MB)
Animation 1 Presentation Trondheim 2004
Request a copy
CYLIND.avi
Publisher postprint (11.11 MB)
Animation 2 Presentation Trondheim 2004
Request a copy
jN61_edmc_2.avi
Publisher postprint (1.52 MB)
Animation 3 Presentation Trondheim 2004
Request a copy
jones_G5_ie2.avi
Publisher postprint (1.5 MB)
Animation 4 Presentation Trondheim 2004
Request a copy
jones_n41_edmc2.avi
Publisher postprint (1.53 MB)
Animation 5 Presentation Trondheim 2004
Request a copy
jones_n76_edmc2.avi
Publisher postprint (1.46 MB)
Animation 6 Presentation Trondheim 2004
Request a copy
sn_edmc_av.avi
Publisher postprint (16.17 MB)
Animation 7 Presentation Trondheim 2004
Request a copy
TAYLOR.avi
Publisher postprint (5.37 MB)
Animation 8 Presentation Trondheim 2004
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
energy-dissipative momentum conserving; dynamics time integration; hypoelastic models; large strain; finite-element simulation
Abstract :
[en] Recent developments, in non-linear structural dynamics, have led to a new kind of implicit algorithms: the energy-momentum conserving algorithm (EMCA) and the energy-dissipative, momentum-conserving algorithm. Contrarily to commonly used algorithms, such as the explicit central difference or the alpha-generalized method, the stability of those algorithms is always ensured in the non-linear range. Thanks to this unconditional stability the only requirement on the time step size is that it must be small enough to capture the physics. This requirement is less restrictive than a conditional stability. In previous works, we have developed a new formulation of the internal forces for a hypoelastic model, that leads to an EMCA. In this paper, we will extend this formulation to an energy-dissipative, momentum-conserving algorithm. We will prove with an academic example, that our algorithm is more accurate than the alpha-generalized method in the non-linear range. Then we will simulate a blade loss problem to demonstrate the efficiency of our developments on complex dynamics simulations. (c) 2005 Elsevier Ltd. All rights reserved.
Disciplines :
Mechanical engineering
Author, co-author :
Noels, Ludovic  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Milieux continus et thermomécanique
Stainier, Laurent ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS - Milieux continus et thermomécanique
Ponthot, Jean-Philippe  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire
Language :
English
Title :
Simulation of complex impact problems with implicit time algorithms: Application to a turbo-engine blade loss problem
Publication date :
December 2005
Journal title :
International Journal of Impact Engineering
ISSN :
0734-743X
Publisher :
Pergamon-Elsevier Science Ltd, Oxford, United Kingdom
Special issue title :
Fifth International Symposium on Impact engineering
Volume :
32
Issue :
1-4
Pages :
358–386
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 03 July 2008

Statistics


Number of views
142 (7 by ULiège)
Number of downloads
16 (2 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
1
OpenCitations
 
3
OpenAlex citations
 
6

Bibliography


Similar publications



Contact ORBi