Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow
[en] With ever-evolving light-emitting diode (LED) technology, classical photochemical transformations are becoming accessible with more efficient and industrially viable light sources. In combination with a triplet sensitizer, we report the detailed exploration of [2 + 2] cycloadditions, in flow, of various maleic anhydride derivatives with gaseous ethylene. By the use of a flow reactor capable of gas handling and LED wavelength/power screening, an in-depth optimization of these reactions was carried out. In particular, we highlight the importance of matching the substrate and sensitizer triplet energies alongside the light source emission wavelength and power. Initial triplet-sensitized reactions of maleic anhydride were hampered by benzophenone’s poor absorbance at 375 nm. However, density functional theory (DFT) calculations predicted that derivatives such as citraconic anhydride have low enough triplet energies to undergo triplet transfer from thioxanthone, whose absorbance matches the LED emission at 375 nm. This observation held true experimentally, allowing optimization and further exemplification in a larger-scale reactor, whereby >100 g of material was processed in 10 h. These straightforward DFT calculations were also applied to a number of other substrates and showed a good correlation with experimental data, implying that their use can be a powerful strategy in targeted reaction optimization for future substrates.
Disciplines :
Chemistry
Author, co-author :
Williams, Jason D.
Nakano, Momoe
Gerardy, Romaric ; Université de Liège - ULiège > Département de chimie (sciences) > CITOS
Rincon, Juan A.
de Frutos, Oscar
Mateos, Carlos
Monbaliu, Jean-Christophe ; Université de Liège - ULiège > Département de chimie (sciences) > Synthèse organique appliquée
Kappe, C. Oliver
Language :
English
Title :
Finding the Perfect Match: A Combined Computational and Experimental Study toward Efficient and Scalable Photosensitized [2 + 2] Cycloadditions in Flow
Publication date :
January 2019
Journal title :
Organic Process Research and Development
ISSN :
1083-6160
eISSN :
1520-586X
Publisher :
ACS Publications, Washington DC, United States - Washington
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898-6926, 10.1021/acs.joc.6b01449
Romero, N. A.; Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075-10166, 10.1021/acs.chemrev.6b00057
Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transition Metal Complexes: Applications in Organic Synthesis. Chem. Rev. 2013, 113, 5322-5363, 10.1021/cr300503r
Poplata, S.; Tröster, A.; Zou, Y. Q.; Bach, T. Recent Advances in the Synthesis of Cyclobutanes by Olefin [2 + 2] Photocycloaddition Reactions. Chem. Rev. 2016, 116, 9748-9815, 10.1021/acs.chemrev.5b00723
Chen, T.; Barton, L. M.; Lin, Y.; Tsien, J.; Kossler, D.; Bastida, I.; Asai, S.; Bi, C.; Chen, J. S.; Shan, M.; Fang, H.; Fang, F. G.; Choi, H.; Hawkins, L.; Qin, T.; Baran, P. S. Building C(sp 3 )-Rich Complexity by Combining Cycloaddition and C-C Cross-Coupling Reactions. Nature 2018, 560, 350-354, 10.1038/s41586-018-0391-9
Poplata, S.; Bach, T. Enantioselective Intermolecular [2 + 2] Photocycloaddition Reaction of Cyclic Enones and Its Application in a Synthesis of (-)-Grandisol. J. Am. Chem. Soc. 2018, 140, 3228-3231, 10.1021/jacs.8b01011
Skalenko, Y. A.; Druzhenko, T. V.; Denisenko, A. V.; Samoilenko, M. V.; Dacenko, O. P.; Trofymchuk, S. A.; Grygorenko, O. O.; Tolmachev, A. A.; Mykhailiuk, P. K. [2 + 2]-Photocycloaddition of N-Benzylmaleimide to Alkenes As an Approach to Functional 3-Azabicyclo[3.2.0]heptanes. J. Org. Chem. 2018, 83, 6275-6289, 10.1021/acs.joc.8b00077
Lovering, F.; Bikker, J.; Humblet, C. Escape from Flatland: Increasing Saturation as an Approach to Improving Clinical Success. J. Med. Chem. 2009, 52, 6752-6756, 10.1021/jm901241e
Lovering, F. Escape from Flatland 2: Complexity and Promiscuity. MedChemComm 2013, 4, 515-519, 10.1039/c2md20347b
Barker, A.; Kettle, J. G.; Nowak, T.; Pease, J. E. Expanding Medicinal Chemistry Space. Drug Discovery Today 2013, 18, 298-304, 10.1016/j.drudis.2012.10.008
Reekie, T. A.; Williams, C. M.; Rendina, L. M.; Kassiou, M. Cubanes in Medicinal Chemistry. J. Med. Chem. 2018, 10.1021/acs.jmedchem.8b00888
Wlochal, J.; Davies, R. D. M.; Burton, J. Cubanes in Medicinal Chemistry: Synthesis of Functionalized Building Blocks. Org. Lett. 2014, 16, 4094-4097, 10.1021/ol501750k
Stepan, A. F.; Subramanyam, C.; Efremov, I. V.; Dutra, J. K.; O'Sullivan, T. J.; Dirico, K. J.; McDonald, W. S.; Won, A.; Dorff, P. H.; Nolan, C. E.; Becker, S. L.; Pustilnik, L. R.; Riddell, D. R.; Kauffman, G. W.; Kormos, B. L.; Zhang, L.; Lu, Y.; Capetta, S. H.; Green, M. E.; Karki, K.; Sibley, E.; Atchison, K. P.; Hallgren, A. J.; Oborski, C. E.; Robshaw, A. E.; Sneed, B.; O'Donnell, C. J. Application of the Bicyclo[1.1.1]pentane Motif as a Nonclassical Phenyl Ring Bioisostere in the Design of a Potent and Orally Active γ-Secretase Inhibitor. J. Med. Chem. 2012, 55, 3414-3424, 10.1021/jm300094u
https://www.sigmaaldrich.com/catalog/product/aldrich/m188 (accessed Oct 27, 2018).
Bloomfield, J. J.; Owsley, D. G. Photochemical [2 + 2] Cycloaddition Reactions at Low Temperatures. Synthesis of Bridgehead Substituted Bicyclo[n.2.0]dicarboxylates from Maleic Acid Derivatives and Ethylene. J. Org. Chem. 1971, 36, 3768-3773, 10.1021/jo00823a023
Faure, S.; Jensen, A. A.; Maurat, V.; Gu, X.; Sagot, E.; Aitken, D. J.; Bolte, J.; Gefflaut, T.; Bunch, L. Stereoselective Chemoenzymatic Synthesis of the Four Stereoisomers of L-2-(2-Carboxycyclobutyl)glycine and Pharmacological Characterization at Human Excitatory Amino Acid Transporter Subtypes 1, 2, and 3. J. Med. Chem. 2006, 49, 6532-6538, 10.1021/jm060822s
Corcoran, E. B.; Lévesque, F.; McMullen, J. P.; Naber, J. R. Studies Toward the Scaling of Gas-Liquid Photocycloadditions. ChemPhotoChem. 2018, 2, 931-937, 10.1002/cptc.201800098
Jin, Y.; Fu, H. Visible-Light Photoredox Decarboxylative Couplings. Asian J. Org. Chem. 2017, 6, 368-385, 10.1002/ajoc.201600513
Weaver, J. D.; Recio, A., III; Grenning, A. J.; Tunge, J. A. Transition Metal-Catalyzed Decarboxylative Allylation and Benzylation Reactions. Chem. Rev. 2011, 111, 1846-1913, 10.1021/cr1002744
Murarka, S. N-(Acyloxy)phthalimides as Redox-Active Esters in Cross-Coupling Reactions. Adv. Synth. Catal. 2018, 360, 1735-1753, 10.1002/adsc.201701615
Dzik, W. I.; Lange, P. P.; Gooßen, L. J. Carboxylates as Sources of Carbon Nucleophiles and Electrophiles: Comparison of Decarboxylative and Decarbonylative Pathways. Chem. Sci. 2012, 3, 2671-2678, 10.1039/c2sc20312j
Patra, T.; Maiti, D. Decarboxylation as the Key Step in C-C Bond-Forming Reactions. Chem.-Eur. J. 2017, 23, 7382-7401, 10.1002/chem.201604496
Schwarz, J.; König, B. Decarboxylative reactions with and without light-a comparison. Green Chem. 2018, 20, 323-361, 10.1039/C7GC02949G
Li, Y.; Ge, L.; Muhammad, M. T.; Bao, H. Recent Progress on Radical Decarboxylative Alkylation for C sp 3 -C Bond Formation. Synthesis 2017, 49, 5263-5284, 10.1055/s-0036-1590935
Gooßen, L. J.; Rodríguez, N.; Gooßen, K. Carboxylic Acids as Substrates in Homogeneous Catalysis. Angew. Chem., Int. Ed. 2008, 47, 3100-3120, 10.1002/anie.200704782
Rodríguez, N.; Goossen, L. J. Decarboxylative coupling reactions: a modern strategy for C-C-Bond formation. Chem. Soc. Rev. 2011, 40, 5030-5048, 10.1039/c1cs15093f
Cornella, J.; Larrosa, I. Decarboxylative Carbon-Carbon Bond-Forming Transformations of (Hetero)Aromatic Carboxylic Acids. Synthesis 2012, 44, 653-676, 10.1055/s-0031-1289686
Su, Y.; Straathof, N. J. W.; Hessel, V.; Noël, T. Photochemical Transformations Accelerated in Continuous-Flow Reactors: Basic Concepts and Applications. Chem.-Eur. J. 2014, 20, 10562-10589, 10.1002/chem.201400283
Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chem. Rev. 2016, 116, 10276-10341, 10.1021/acs.chemrev.5b00707
Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Flow Photochemistry: Old Light through New Windows. Beilstein J. Org. Chem. 2012, 8, 2025-2052, 10.3762/bjoc.8.229
Elliott, L. D.; Knowles, J. P.; Koovits, P. J.; Maskill, K. G.; Ralph, M. J.; Lejeune, G.; Edwards, L. J.; Robinson, R. I.; Clemens, I. R.; Cox, B.; Pascoe, D. D.; Koch, G.; Eberle, M.; Berry, M. B.; Booker-Milburn, K. I. Batch versus Flow Photochemistry: A Revealing Comparison of Yield and Productivity. Chem.-Eur. J. 2014, 20, 15226-15232, 10.1002/chem.201404347
Politano, F.; Oksdath-Mansilla, G. Light on the Horizon: Current Research and Future Perspectives in Flow Photochemistry. Org. Process Res. Dev. 2018, 22, 1045-1062, 10.1021/acs.oprd.8b00213
Mizuno, K.; Nishiyama, Y.; Ogaki, T.; Terao, K.; Ikeda, H.; Kakiuchi, K. Utilization of Microflow Reactors to Carry out Synthetically Useful Organic Photochemical Reactions. J. Photochem. Photobiol., C 2016, 29, 107-147, 10.1016/j.jphotochemrev.2016.10.002
Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The Hitchhiker's Guide to Flow Chemistry. Chem. Rev. 2017, 117, 11796-11893, 10.1021/acs.chemrev.7b00183
Noël, T. A Personal Perspective on the Future of Flow Photochemistry. J. Flow Chem. 2017, 7, 87-93, 10.1556/1846.2017.00022
Terao, K.; Nishiyama, Y.; Tanimoto, H.; Morimoto, T.; Oelgemöller, M.; Morimoto, T. Diastereoselective [2 + 2] Photocycloaddition of a Chiral Cyclohexenone with Ethylene in a Continuous Flow Microcapillary Reactor. J. Flow Chem. 2012, 2, 73-76, 10.1556/JFC-D-12-00005
Fukuyama, T.; Kajihara, Y.; Hino, Y.; Ryu, I. Continuous Microflow [2 + 2] Photocycloaddition Reactions Using Energy-Saving Compact Light Sources. J. Flow Chem. 2012, 1, 40-45, 10.1556/jfchem.2011.00007
Conradi, M.; Junkers, T. Efficient [2 + 2] Photocycloadditions under Equimolar Conditions by Employing a Continuous UV-Flow Reactor. J. Photochem. Photobiol., A 2013, 259, 41-46, 10.1016/j.jphotochem.2013.02.024
Elliott, L. D.; Berry, M.; Harji, B.; Klauber, D.; Leonard, J.; Booker-Milburn, K. I. A Small-Footprint, High-Capacity Flow Reactor for UV Photochemical Synthesis on the Kilogram Scale. Org. Process Res. Dev. 2016, 20, 1806-1811, 10.1021/acs.oprd.6b00277
Elliott, L. D.; Knowles, J. P.; Stacey, C. S.; Klauber, D. J.; Booker-Milburn, K. I. Using batch reactor results to calculate optimal flow rates for the scale-up of UV photochemical reactions. React. Chem. Eng. 2018, 3, 86-93, 10.1039/C7RE00193B
Sender, M.; Ziegenbalg, D. Light Sources for Photochemical Processes-Estimation of Technological Potentials. Chem. Ing. Tech. 2017, 89, 1159-1173, 10.1002/cite.201600191
Muramoto, Y.; Kimura, M.; Nouda, S. Development and Future of Ultraviolet Light-Emitting Diodes: UV-LED Will Replace the UV Lamp. Semicond. Sci. Technol. 2014, 29, 084004, 10.1088/0268-1242/29/8/084004
Hirayama, H.; Maeda, N.; Fujikawa, S.; Toyoda, S.; Kamata, N. Recent Progress and Future Prospects of AlGaN- Diodes. Jpn. J. Appl. Phys. 2014, 53, 100209, 10.7567/JJAP.53.100209
Loponov, K. N.; Lopes, J.; Barlog, M.; Astrova, E. V.; Malkov, A. V.; Lapkin, A. A. Optimization of a Scalable Photochemical Reactor for Reactions with Singlet Oxygen. Org. Process Res. Dev. 2014, 18, 1443-1454, 10.1021/op500181z
Bonfield, H. E.; Williams, J. D.; Ooi, X.; Leach, S. G.; Kerr, W. J.; Edwards, L. J. A Detailed Study of Irradiation Requirements Towards an Efficient Photochemical Wohl-Ziegler Procedure in Flow. ChemPhotoChem. 2018, 2, 938-944, 10.1002/cptc.201800082
Gorges, R.; Meyer, S.; Kreisel, G. Photocatalysis in Microreactors. J. Photochem. Photobiol., A 2004, 167, 95-99, 10.1016/j.jphotochem.2004.04.004
Meyer, S.; Tietze, D.; Rau, S.; Schäfer, B.; Kreisel, G. Photosensitized Oxidation of Citronellol in Microreactors. J. Photochem. Photobiol., A 2007, 186, 248-253, 10.1016/j.jphotochem.2006.08.014
Ziegenbalg, D.; Kreisel, G.; Weiß, D.; Kralisch, D. OLEDs as Prospective Light Sources for Microstructured Photoreactors. Photochem. Photobiol. Sci. 2014, 13, 1005-1015, 10.1039/C3PP50302J
Manabe, Y.; Kitawaki, Y.; Nagasaki, M.; Fukase, K.; Matsubara, H.; Hino, Y.; Fukuyama, T.; Ryu, I. Revisiting the Bromination of C-H Bonds with Molecular Bromine by Using a Photo-Microflow System. Chem.-Eur. J. 2014, 20, 12750-12753, 10.1002/chem.201402303
Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet Photosensitizers: From Molecular Design to Applications. Chem. Soc. Rev. 2013, 42, 5323, 10.1039/c3cs35531d
Aloïse, S.; Ruckebusch, C.; Blanchet, L.; Réhault, J.; Buntinx, G.; Huvenne, J. P. The Benzophenone S 1 (n,π∗) →T 1 (n,π∗) States Intersystem Crossing Reinvestigated by Ultrafast Absorption Spectroscopy and Multivariate Curve Resolution. J. Phys. Chem. A 2008, 112, 224-231, 10.1021/jp075829f
Hörmann, F. M.; Chung, T. S.; Rodriguez, E.; Jakob, M.; Bach, T. Evidence for Triplet Sensitization in the Visible-Light-Induced [2 + 2] Photocycloaddition of Eniminium Ions. Angew. Chem., Int. Ed. 2018, 57, 827-831, 10.1002/anie.201710441
Zhao, J.; Brosmer, J. L.; Tang, Q.; Yang, Z.; Houk, K. N.; Diaconescu, P. L.; Kwon, O. Intramolecular Crossed [2 + 2] Photocycloaddition through Visible Light-Induced Energy Transfer. J. Am. Chem. Soc. 2017, 139, 9807-9810, 10.1021/jacs.7b05277
Shen, Y.; Gu, Y.; Martin, R. sp 3 C-H Arylation and Alkylation Enabled by the Synergy of Triplet Excited Ketones and Nickel Catalysts. J. Am. Chem. Soc. 2018, 140, 12200-12209, 10.1021/jacs.8b07405
Strieth-Kalthoff, F.; James, M. J.; Teders, M.; Pitzer, L.; Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 2018, 47, 7190-7202, 10.1039/C8CS00054A
James, M. J.; Schwarz, J. L.; Strieth-Kalthoff, F.; Wibbeling, B.; Glorius, F. Dearomative Cascade Photocatalysis: Divergent Synthesis through Catalyst Selective Energy Transfer. J. Am. Chem. Soc. 2018, 140, 8624-8628, 10.1021/jacs.8b03302
Blum, T. R.; Miller, Z. D.; Bates, D. M.; Guzei, I. A.; Yoon, T. P. Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science 2016, 354, 1391-1395, 10.1126/science.aai8228
Zhao, J.; Brosmer, J. L.; Tang, Q.; Yang, Z.; Houk, K. N.; Diaconescu, P. L.; Kwon, O. Intramolecular Crossed [2 + 2] Photocycloaddition through Visible Light-Induced Energy Transfer. J. Am. Chem. Soc. 2017, 139, 9807-9810, 10.1021/jacs.7b05277
Gérardy, R.; Winter, M.; Horn, C. R.; Vizza, A.; Van Hecke, K.; Monbaliu, J.-C. M. Continuous-Flow Preparation of γ-Butyrolactone Scaffolds from Renewable Fumaric and Itaconic Acids under Photosensitized Conditions. Org. Process Res. Dev. 2017, 21, 2012-2017, 10.1021/acs.oprd.7b00314
Emmanuel, N.; Mendoza, C.; Winter, M.; Horn, C. R.; Vizza, A.; Dreesen, L.; Heinrichs, B.; Monbaliu, J.-C. M. Scalable Photocatalytic Oxidation of Methionine under Continuous-Flow Conditions. Org. Process Res. Dev. 2017, 21, 1435-1438, 10.1021/acs.oprd.7b00212
Nakano, M.; Nishiyama, Y.; Tanimoto, H.; Morimoto, T.; Kakiuchi, K. Remarkable Improvement of Organic Photoreaction Efficiency in the Flow Microreactor by the Slug Flow Condition Using Water. Org. Process Res. Dev. 2016, 20, 1626-1632, 10.1021/acs.oprd.6b00181
Telmesani, R.; White, J. A. H.; Beeler, A. B. Liquid-Liquid Slug-Flow-Accelerated [2 + 2] Photocycloaddition of Cinnamates. ChemPhotoChem. 2018, 2, 865-869, 10.1002/cptc.201800081
Herkstroeter, W. G.; Lamola, A. A.; Hammond, G. S. Mechanisms of Photochemical Reactions in Solution. XXVIII. Values of Triplet Excitation Energies of Selected Sensitizers. J. Am. Chem. Soc. 1964, 86, 4537-4540, 10.1021/ja01075a005
McClure, D. S. Triplet-Singlet Transitions in Organic Molecules. Lifetime Measurements of the Triplet State. J. Chem. Phys. 1949, 17, 905-913, 10.1063/1.1747085
Montalti, M.; Credi, A.; Prodi, L.; Gandolfi, M. T. Handbook of Photochemistry, 3 rd ed.; CRC Press: Boca Raton, FL, 2006.
Mayr, F.; Brimioulle, R.; Bach, T. A Chiral Thiourea as a Template for Enantioselective Intramolecular [2 + 2] Photocycloaddition Reactions. J. Org. Chem. 2016, 81, 6965-6971, 10.1021/acs.joc.6b01039
Alonso, R.; Bach, T. A Chiral Thioxanthone as an Organocatalyst for Enantioselective [2 + 2] Photocycloaddition Reactions Induced by Visible Light. Angew. Chem., Int. Ed. 2014, 53, 4368-4371, 10.1002/anie.201310997
Kumarasamy, E.; Raghunathan, R.; Jockusch, S.; Ugrinov, A.; Sivaguru, J. Tailoring Atropisomeric Maleimides for Stereospecific [2 + 2] Photocycloaddition-Photochemical and Photophysical Investigations Leading to Visible-Light Photocatalysis. J. Am. Chem. Soc. 2014, 136, 8729-8737, 10.1021/ja5034638
Conradi, M.; Junkers, T. Fast and Efficient [2 + 2] UV Cycloaddition for Polymer Modification via Flow Synthesis. Macromolecules 2014, 47, 5578-5585, 10.1021/ma500751j
Tröster, A.; Alonso, R.; Bauer, A.; Bach, T. Enantioselective Intermolecular [2 + 2] Photocycloaddition Reactions of 2(1H)-Quinolones Induced by Visible Light Irradiation. J. Am. Chem. Soc. 2016, 138, 7808-7811, 10.1021/jacs.6b03221
Wu, Q.; Xiong, Y.; Liang, Q.; Tang, H. Developing Thioxanthone Based Visible Photoinitiators for Radical Polymerization. RSC Adv. 2014, 4, 52324-52331, 10.1039/C4RA07614A
Karaca, N.; Ocal, N.; Arsu, N.; Jockusch, S. Thioxanthone-Benzothiophenes as Photoinitiator for Free Radical Polymerization. J. Photochem. Photobiol., A 2016, 331, 22-28, 10.1016/j.jphotochem.2016.01.017
Hughes, D. L. Applications of Flow Chemistry in Drug Development: Highlights of Recent Patent Literature. Org. Process Res. Dev. 2018, 22, 13-20, 10.1021/acs.oprd.7b00363
Gutmann, B.; Cantillo, D.; Kappe, C. O. Continuous-Flow Technology-A Tool for the Safe Manufacturing of Active Pharmaceutical Ingredients. Angew. Chem., Int. Ed. 2015, 54, 6688-6728, 10.1002/anie.201409318
Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Taming Hazardous Chemistry by Continuous Flow Technology. Chem. Soc. Rev. 2016, 45, 4892-4928, 10.1039/C5CS00902B
Scharf, H.; Mattay, J. Synthese von α Alkyl Und α,α′ Dialkylmuconsäuren Auf Dem Wege Der [2 + 2] Cycloaddition von Acetylen an Alkylderivate Des Maleinsäureanhydrids. Justus Liebigs Ann. Chem. 1977, 1977, 772-790, 10.1002/jlac.197719770508
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.