Selectivity evaluation of phenyl based stationary phases for the analysis of amino acid diastereomers by liquid chromatography coupled with mass spectrometry
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Moldovan, R.-C.; Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, Liege, 4000, Belgium, Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, Cluj-Napoca, 400349, Romania
Bodoki, E.; Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, Cluj-Napoca, 400349, Romania
Servais, Anne-Catherine ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Crommen, Jacques ; Université de Liège - ULiège > Département de pharmacie > Département de pharmacie
Oprean, R.; Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, Cluj-Napoca, 400349, Romania
Fillet, Marianne ; Université de Liège - ULiège > Département de pharmacie > Analyse des médicaments
Language :
English
Title :
Selectivity evaluation of phenyl based stationary phases for the analysis of amino acid diastereomers by liquid chromatography coupled with mass spectrometry
Balu, D.T., Coyle, J.T., The NMDA receptor “glycine modulatory site” in schizophrenia: D-serine, glycine, and beyond. Curr. Opin. Pharmacol. 20 (2015), 109–115, 10.1016/j.coph.2014.12.004.
Ferraris, D.V., Tsukamoto, T., Recent advances in the discovery of D-amino acid oxidase inhibitors and their therapeutic utility in schizophrenia. Curr. Pharm. Des. 17 (2011), 103–111, 10.2174/138161211795049633.
Hashimoto, K., The NMDA receptor hypofunction hypothesis for schizophrenia and glycine modulatory sites on the NMDA receptors as potential therapeutic drugs. Clin. Psychopharmacol. Neurosci. 4 (2006), 3–10.
Coyle, J., Tsai, G., The NMDA receptor glycine modulatory site: a therapeutic target for improving cognition and reducing negative symptoms in schizophrenia. Psychopharmacology (Berl.) 174 (2004), 32–38, 10.1007/s00213-003-1709-2.
Wang, C., McInnis, J., Ross-Sanchez, M., Shinnick-Gallagher, P., Wiley, J.L., Johnson, K.M., Long-term behavioral and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience 107 (2001), 535–550, 10.1016/S0306-4522(01)00384-0.
Labrie, V., Wong, A.H.C., Roder, J.C., Contributions of the d-serine pathway to schizophrenia. Neuropharmacology 62 (2012), 1484–1503, 10.1016/j.neuropharm.2011.01.030.
Mitchell, J., Paul, P., Chen, H.-J., Morris, A., Payling, M., Falchi, M., Habgood, J., Panoutsou, S., Winkler, S., Tisato, V., Hajitou, A., Smith, B., Vance, C., Shaw, C., Mazarakis, N.D., de Belleroche, J., Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase. Proc. Natl. Acad. Sci. U. S. A. 107 (2010), 7556–7561, 10.1073/pnas.0914128107.
Sasabe, J., Chiba, T., Yamada, M., Okamoto, K., Nishimoto, I., Matsuoka, M., Aiso, S., D-Serine is a key determinant of glutamate toxicity in amyotrophic lateral sclerosis. EMBO J. 26 (2007), 4149–4159, 10.1038/sj.emboj.7601840.
Sasabe, J., Miyoshi, Y., Suzuki, M., Mita, M., Konno, R., Matsuoka, M., Hamase, K., Aiso, S., D-Amino acid oxidase controls motoneuron degeneration through D-serine. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 627–632, 10.1073/pnas.1114639109.
Hashimoto, K., Yoshida, T., Ishikawa, M., Fujita, Y., Niitsu, T., Nakazato, M., Watanabe, H., Sasaki, T., Shiina, A., Hashimoto, T., Kanahara, N., Hasegawa, T., Enohara, M., Kimura, A., Iyo, M., Increased serum levels of serine enantiomers in patients with depression. Acta Neuropsychiatr. 28 (2016), 173–178, 10.1017/neu.2015.59.
Visser, W.F., Verhoeven-Duif, N.M., Ophoff, R., Bakker, S., Klomp, L.W., Berger, R., de Koning, T.J., A sensitive and simple ultra-high-performance-liquid chromatography–tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. J. Chromatogr. A 1218 (2011), 7130–7136, 10.1016/j.chroma.2011.07.087.
Suzuki, M., Imanishi, N., Mita, M., Hamase, K., Aiso, S., Sasabe, J., Heterogeneity of D-serine distribution in the human central nervous system. ASN Neuro 9 (2017), 1–10, 10.1177/1759091417713905.
Armstrong, D.W., Gasper, M., Lee, S.H., Zukowski, J., Ercal, N., D-amino acid levels in human physiological fluids. Chirality 5 (1993), 375–378, 10.1002/chir.530050519.
Fradi, I., Servais, A.-C., Lamalle, C., Kallel, M., Abidi, M., Crommen, J., Fillet, M., Chemo- and enantio-selective method for the analysis of amino acids by capillary electrophoresis with in-capillary derivatization. J. Chromatogr. A 1267 (2012), 121–126, 10.1016/j.chroma.2012.05.098.
Miao, Y., Liu, Q., Wang, W., Liu, L., Wang, L., Enantioseparation of amino acids by micellar capillary electrophoresis using binary chiral selectors and determination of D-glutamic acid and D-aspartic acid in rice wine. J. Liq. Chromatogr. Relat. Technol. 6076 (2017), 1–7, 10.1080/10826076.2017.1364263.
Tang, W., Ong, T.T., Ng, S.-C., Chiral separation of dansyl amino acids in capillary electrophoresis using mono-(3-methyl-imidazolium)-β-cyclodextrin chloride as selector. J. Sep. Sci. 30 (2007), 1343–1349, 10.1002/jssc.200600461.
Moldovan, R.-C., Bodoki, E., Servais, A.-C., Crommen, J., Oprean, R., Fillet, M., (+) or (−)-1-(9-fluorenyl)ethyl chloroformate as chiral derivatizing agent: a review. J. Chromatogr. A 1513 (2017), 1–17, 10.1016/j.chroma.2017.07.045.
Einarsson, S., Josefsson, B., Möller, P., Sanchez, D., Separation of amino acid enantiomers and chiral amines using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography. Anal. Chem. 59 (1987), 1191–1195, 10.1021/ac00135a025.
Agilent Technologies, Use of Tetrahydrofuran (THF) with LC/MS, (n.d.) 1–2. https://www.agilent.com/cs/library/Support/Documents/FAQ757F05020.pdf.
Yang, M., Fazio, S., Munch, D., Drumm, P., Impact of methanol and acetonitrile on separations based on π–π interactions with a reversed-phase phenyl column. J. Chromatogr. A 1097 (2005), 124–129, 10.1016/j.chroma.2005.08.028.
Grein, F., Twist angles and rotational energy barriers of biphenyl and substituted biphenyls. J. Phys. Chem. A 106 (2002), 3823–3827, 10.1021/jp0122124.
Moldovan, R.-C., Bodoki, E., Servais, A.-C., Chankvetadze, B., Crommen, J., Oprean, R., Fillet, M., Capillary electrophoresis-mass spectrometry of derivatized amino acids for targeted neurometabolomics – pH mediated reversal of diastereomer migration order. J. Chromatogr. A 1564 (2018), 199–206, 10.1016/j.chroma.2018.06.030.
Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikstrom, C., Wold, S., Design of Experiments, Principles and Applications. 2000, Umetrics, Stockholm, 10.1002/cem.686.
Okuma, E., Abe, H., Simultaneous determination of d- and l-amino acids in the nervous tissues of crustaceans using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr. B Biomed. Sci. Appl. 660 (1994), 243–250, 10.1016/0378-4347(94)00304-1.
Hayashi, T., Sasagawa, T., A method for identifying the carboxy terminal amino acid of a protein. Anal. Biochem. 209 (1993), 163–168, 10.1006/abio.1993.1097.