[en] The time series of Synthetic Aperture Radar data acquired by four satellite missions (including ERS, Envisat, TerraSAR-X and Sentinel 1) were processed using Persistent Scatterer interferometric synthetic aperture radar (InSAR) techniques. The processed datasets provide a nearly continuous coverage from 1992 to 2017 over the Brussels Region (Belgium) and give evidence of ongoing, slow ground deformations. The results highlight an area of uplift located in the heart of the city, with a cumulative ground displacement of ±4 cm over a 25-year period. The rates of uplift appear to have decreased from 2 to 4 mm/year during the ERS acquisition period (1992–2006) down to 0.5–1 mm/year for the Sentinel 1 data (2014–2017). Uplift of the city centre is attributed to a reduction of groundwater extraction from the deeper (Cenozoic-Paleozoic) aquifers, related to the deindustrialization of the city centre since the 1970s. The groundwater levels attested by piezometers in these aquifers show a clear recharge trend which induced the uplift. Some areas of subsidence in the river valleys such as the Maelbeek can be related to the natural settlement of soft, young alluvial deposits, possibly increased by the load of buildings.
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Declercq, Pierre-Yves; Institut Royal des Sciences Naturelles de Belgique > Geological Survey of Belgium
Walstra, Jan; Institut Royal des Sciences Naturelles de Belgique > Geological Survey of Belgium
Gérard, Pierre; Université Libre de Bruxelles - ULB
Pirard, Eric ; Université de Liège - ULiège > Département ArGEnCo > Géoressources minérales & Imagerie géologique
Perissin, Daniele; Purdue University - Purdue
Meyvis, Bruno; Institut Royal des Sciences Naturelles de Belgique
Devleeschouwer, Xavier; Institut Royal des Sciences Naturelles de Belgique
Language :
English
Title :
A Study of Ground Movements in Brussels (Belgium) Monitored by Persistent Scatterer Interferometry over a 25-Year Period
Gabriel, A.K., Goldstein, R.M., Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. 1989, 94, 9183.
Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78-89.
Ferretti, A., Prati, C., Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202-2212.
Ferretti, A., Prati, C., Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8-20.
Hooper, A., Zebker, H., Segall, P., Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31.
Terrafirma Project. Available online: http://www.terrafirma.eu.com/ (accessed on 24 October 2017).
Devleeschouwer, X., Pouriel, F., Declercq, P. Vertical displacements (uplift) revealed by the PSInSAR technique in the Centre of Brussels, Belgium. In Proceedings of the IAEG2006 Engineering Geology for Tomorrow’s Cities, Nottingham, UK, 6-10 September 2006.
Cigna, F., Osmanoğlu, B., Cabral-Cano, E., Dixon, T.H., Ávila-Olivera, J.A., Garduño-Monroy, V.H., DeMets, C., Wdowinski, S. Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sens. Environ. 2012, 117, 146-161.
Sowter, A., Amat, M.B.C., Cigna, F., Marsh, S., Athab, A., Alshammari, L. Mexico City land subsidence in 2014-2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 230-242.
Chaussard, E., Wdowinski, S., Cabral-Cano, E., Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94-106.
Castellazzi, P., Arroyo-Domínguez, N., Martel, R., Calderhead, A.I., Normand, J.C.L., Gárfias, J., Rivera, A. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 102-111.
Bell, J.W., Amelung, F., Ferretti, A., Bianchi, M., Novali, F. Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour. Res. 2008, 44.
Hu, R.L., Yue, Z.Q., Wang, L.C., Wang, S.J. Review on current status and challenging issues of land subsidence in China. Eng. Geol. 2004, 76, 65-77.
Dong, S., Samsonov, S., Yin, H., Ye, S., Cao, Y. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. Earth Sci. 2014, 72, 677-691.
Teatini, P., Gambolati, G., Ferronato, M., Settari, A.T., Walters, D. Land uplift due to subsurface fluid injection. J. Geodyn. 2011, 51, 1-16.
Newell, P., Yoon, H., Martinez, M.J., Bishop, J.E., Bryant, S.L. Investigation of the influence of geomechanical and hydrogeological properties on surface uplift at In Salah. J. Pet. Sci. Eng. 2017, 155, 34-45.
Wnuk, K., Wauthier, C. Surface deformation induced by magmatic processes at Pacaya Volcano, Guatemala revealed by InSAR. J. Volcanol. Geotherm. Res. 2017.
Pinel, V., Raucoules, D. The Contribution of SAR Data to Volcanology and Subsidence Studies. In Land Surface Remote Sensing, Elsevier: London, UK, 2016, pp. 221-262, ISBN 978-1-78548-105-5.
Sintubin, M., Everaerts, M. A compressional wedge model for the Lower Palaeozoic Anglo-Brabant Belt (Belgium) based on potential field data. Geol. Soc. Lond. Spec. Publ. 2002, 201, 327-343.
Piessens, K., De Vos, W., Herbosch, A., Debacker, T., Verniers, J. Lithostratigraphy and geological structure of the Cambrian rocks at Halle-Lembeek (Zenne Valley, Belgium). Prof. Pap. Geol. Surv. Belg. 2004, 300, 1-142.
Mathijs, J., Debacker, T., Piessens, K., Sintubin, M. Anomalous topography of the lower Palaeozoic basement in the Brussels region, Belgium. Geol. Belg. 2005, 8, 69-77.
Vercoutere, C., Van Den Haute, P. Post-Palaeozoic cooling and uplift of the Brabant Massif as revealed by apatite fission track analysis. Geol. Mag. 1993, 130, 639.
Deckers, J., Matthijs, J. Middle Paleocene uplift of the Brabant Massif from central Belgium up to the southeast coast of England. Geol. Mag. 2017, 154, 1117-1126.
Buffel, P., Matthijs, J. Kaartblad 31-39 Brussel-Nijvel, Departement Omgeving, Vlaams Planbureau voor Omgeving: Brussels, Belgium, 2009, ISBN 1370-3803.
Rosen, P.A., Hensley, S., Peltzer, G., Simons, M. Updated repeat orbit interferometry package released. Eos Trans. Am. Geophys. Union 2004, 85, 47.
Kampes, B., Usai, S. Doris: The delft object-oriented radar interferometric software. In Proceedings of the 2nd International Symposium on Operationalization of Remote Sensing, Enschede, The Netherlands, 16-20 August 1999, Volume 16, p. 20.
Rudenko, S., Otten, M., Visser, P., Scharroo, R., Schöne, T., Esselborn, S. New improved orbit solutions for the ERS-1 and ERS-2 satellites. Adv. Space Res. 2012, 49, 1229-1244.
Agence Spatiale Européenne. Sentinel-1: ESA’s Radar Observatory Mission for GMES Operational Services, ESA Communications Production: Oakville, ON, Canada, 2012, ISBN 92-9221-418-7.
Perissin, D., Wang, Z., Wang, T. The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China. In Proceedings of the 34th International Symposium on Remote Sensing of Environment, Sydney, Australia, 10-15 April 2011.
Camelbeeck, T., Vanneste, K., Alexandre, P., Verbeeck, K., Petermans, T., Rosset, P., Everaerts, M., Warnant, R., Van Camp, M. Relevance of active faulting and seismicity studies to assessments of long-term earthquake activity and maximum magnitude in intraplate northwest Europe, between the Lower Rhine Embayment and the North Sea. In Special Paper 425: Continental Intraplate Earthquakes: Science, Hazard, and Policy Issues, Geological Society of America: Boulder, CO, USA, 2007, Volume 425, pp. 193-224, ISBN 978-0-8137-2425-6.
Camelbeeck, T., Alexandre, P., Vanneste, K., Meghraoui, M. Long-term seismicity in regions of present day low seismic activity: The example ofWestern Europe. Soil Dyn. Earthq. Eng. 2000, 20, 405-414.
Camelbeeck, T., Alexandre, P., Sabbe, A., Knuts, E., Moreno, D.G., Lecocq, T. The impact of the earthquake activity inWestern Europe from the historical and architectural heritage records. In Intraplate Earthquakes, Talwani, P., Ed., Cambridge University Press: Cambridge, UK, 2014, ISBN 978-1-107-04038-0.
Nuttinck, J.-Y. Evolution de la Nappe Artésienne du Crétacé Sous L’agglomération Bruxelloise, Mémoire Ing. Civil des Mines, Université Libre de Bruxelles: Brussels, Belgium, 1991.
De Beule, M. Bruxelles: Une Ville IndustrielleMéconnue: Impact Urbanistique de L’industrialisation, Dossiers de La Fonderie, La Fonderie, Centre D’histoire Sociale et Industrielle de la Region Bruxelloise: St-Jan-Molenbeek, Belgium, 1994, ISBN 2-930048-00-X.
Stramondo, S., Bozzano, F., Marra, F., Wegmuller, U., Cinti, F.R., Moro, M., Saroli, M. Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations. Remote Sens. Environ. 2008, 112, 3160-3172.
Chen, F., Lin, H., Zhang, Y., Lu, Z. Ground subsidence geo-hazards induced by rapid urbanization: Implications from InSAR observation and geological analysis. Nat. Hazards Earth Syst. Sci. 2012, 12, 935-942.
Herrera, G., Tomás, R., Monells, D., Centolanza, G., Mallorquí, J.J., Vicente, F., Navarro, V.D., Lopez-Sanchez, J.M., Sanabria, M., Cano, M., et al. Analysis of subsidence using TerraSAR-X data: Murcia case study. Eng. Geol. 2010, 116, 284-295.
Devleeschouwer, X., Declercq, P.-Y., Pouriel, F. Radar interferometry reveals subsidence in Quaternary alluvial plains related to groundwater pumping and peat layers (Belgium). In Proceedings of the 5th European Congress on Regional Geoscientific Cartographic and Information Systems, Barcelona, Spain, 13-16 June 2006, Volume 315-317.