Moreno-Velandia, C. A.; Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Centro de Investigación Tibaitatá, Kilómetro 14 vía Mosquera-Bogotá, Cundinamarca, Colombia
Izquierdo-García, L. F.; Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Centro de Investigación Tibaitatá, Kilómetro 14 vía Mosquera-Bogotá, Cundinamarca, Colombia
Ongena, Marc ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbial, food and biobased technologies
Kloepper, J. W.; Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, United States
Cotes, A. M.; Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA, Centro de Investigación Tibaitatá, Kilómetro 14 vía Mosquera-Bogotá, Cundinamarca, Colombia
Language :
English
Title :
Soil sterilization, pathogen and antagonist concentration affect biological control of Fusarium wilt of cape gooseberry by Bacillus velezensis Bs006
Abawi GS, Lorbeer JW (1972) Several aspects of the ecology and pathology of Fusarium oxysporum f. sp. cepae. Phytopathology 62:870–876. 10.1094/Phyto-62-870
Ahmad JS, Baker R (1987) Rhizosphere competence of Trichoderma harzianum. Phytopathology 77:182–189
Alabouvette C, Olivain C, L’Haridon F, Aimé S, Steinberg C (2007) Using strains of Fusarium oxysporum to control Fusarium wilts: dream or reality? In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. NATO Security through Science Series. Springer, Dordrecht, pp 157–177. 10.1007/978-1-4020-5799-1_8
Bacon CW, Porter JK, Norred WP, Leslie JF (1996) Production of fusaric acid by Fusarium species. Appl Environ Microbiol 62:4039–4043
Barrero LS, Bernal A, Navas A, et al (2013) Generación de valor para el desarrollo competitivo del cultivo de la uchuva como modelo de bioprospección de frutas en Colombia. In: Bioprospección para el desarrollo del sector agropecuario de Colombia. Produmedios, Bogotá, pp 120–162
Ben-Yephet Y, Shtienberg D (1997) Effects of the host, the pathogen, the environment and their interactions, on fusarium wilt in carnation. Phytoparasitica 25:207–216. 10.1007/BF02981734
Bonilla MH, Arias PA, Landínez LM, et al (2009) Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la uchuva en fresco para exportación en Colombia. Giro Editores Ltda., Bogotá
Borriss R (2011) Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari DK (ed) Bacteria in agrobiology: plant growth responses. Springer, Berlin, Heidelberg, pp 41–76. 10.1007/978-3-642-20332-9_3
Borriss R (2015) Bacillus, a plant-beneficial bacterium. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer, Cham, pp 379–391. 10.1007/978-3-319-08575-3_40
Bosland PW (1988) Fusarium oxysporum a pathogen of many plant species. Adv Plant Pathol 6:281–289. 10.1016/B978-0-12-033706-4.50023-2
Brent KJ, Hollomon DW (2007) Fungicide resistance: the assessment of the risk. FRAC monograph No. 2 second, (revised) edition. Aimprint, United Kingdom
Bressan W, Fontes JE (2008) Efficacy and dose-response relationship in biocontrol of fusarium disease in maize by Streptomyces spp. Eur J Plant Pathol 120:311–316. 10.1007/s10658-007-9220-y
Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113. 10.1016/j.plaphy.2013.08.011
Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. John Wiley & Sons, New York 532 p
Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P, Dommes J, Ongena M (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant-Microbe Interact 27:87–100. 10.1094/MPMI-09-13-0262-R
Cawoy H, Debois D, Franzil L, de Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8:281–295. 10.1111/1751-7915.12238
Chandel S, Allan EJ, Woodward S (2010) Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis. J Phytopathol 158:470–478. 10.1111/j.1439-0434.2009.01635.x
Chen X, Chen XH, Koumoutsi A et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014. 10.1038/nbt1325
Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R (2009) Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol 140:38–44. 10.1016/j.jbiotec.2008.10.015
Cochrane SA, Vederas JC (2016) Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. Med Res Rev 36:4–31. 10.1002/med.21321
Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:fiw036. 10.1093/femsec/fiw036
Deacon JW (1996) Ecological implications of recognition events in the pre-infection stages of root pathogens. New Phytol 133:135–145. 10.1111/j.1469-8137.1996.tb04349.x
Dean R, Van Kan JAL, Pretorius ZA et al (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430. 10.1111/j.1364-3703.2011.00783.x
Díaz A, Smith A, Mesa P, Zapata J (2012) Avances en el control biológico de F. oxysporum. In: Díaz A (ed) Estrategias de control biológico de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana). Produmedios, Bogotá, pp 71–81
Díaz A, Smith A, Mesa P, et al (2013) Control of fusarium wilt in cape gooseberry by Trichoderma koningiopsis and PGPR. In: Pertot I, Elad Y, Ait Barka E, Clément C (eds) IOBC-WPRS Bulletin. 86:89–94
Du N, Shi L, Yuan Y et al (2017) Isolation of a potential biocontrol agent Paenibacillus polymyxa NSY50 from vinegar waste compost and its induction of host defense responses against fusarium wilt of cucumber. Microbiol Res 202:1–10. 10.1016/j.micres.2017.04.013
Estupiñan H, Ossa J (2007) Efecto del agente causal de la marchitez vascular de la uchuva. F. oxysporum en solanaceas y otras especies. Pontificia Universidad Javeriana, Bogotá Colombia. Undergraduate thesis in Microbiology
Fan B, Blom J, Klenk HP, Borriss R (2017) Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol 8:22. 10.3389/fmicb.2017.00022
Fischer G, Almanza-merchán PJ, Miranda D (2014) Importancia y cultivo de la Uchuva (Physalis peruviana L.). Rev Bras Frutic 36:1–15
Folman LB, De Klein MJEM, Postma J, Van Veen JA (2004) Production of antifungal compounds by Lysobacter enzymogenes isolate 3.1T8 under different conditions in relation to its efficacy as a biocontrol agent of Pythium aphanidermatum in cucumber. Biol Control 31:145–154. 10.1016/j.biocontrol.2004.03.008
Gámez R, Rodríguez F, Bernal JF et al (2015) Genome sequence of the banana plant growth-promoting rhizobacterium Bacillus amyloliquefaciens BS006. Genome Announc 3:2013–2014. 10.1128/genomeA.01391-15.Copyright
Gamliel A, Katan J (1991) Involvement of fluorescent pseudomonads and other microorganisms in increased growth-response of plants in solarized soils. Phytopathology 81:494–502
Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258. 10.1016/j.tibtech.2012.01.003
González C, Barrero LS (2011) Estudio de la marchitez vascular de la uchuva para el mejoramiento genético del cultivo. Cámara de Comercio de Bogotá. Bogotá 44 p
Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg B (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol Plant-Microbe Interact 19:1121–1126. 10.1094/MPMI-19-1121
Larkin RP, Fravel DR (1999) Mechanisms of action and dose-response relationships governing biological control of fusarium wilt of tomato by nonpathogenic Fusarium spp. 89:1152–1161
Lazarovits G, Turnbull A, Johnston-Monje D (2014) Plant health management: Biological control of plant pathogens. Elsevier Ltd. Encyclopedia of Agriculture and Food Systems, Volume 4. 388–399. Elsevier Ltd. 10.1016/B978-0-444-52512-3.00177-7
Leslie J, Xu J-R (2010) Fusarium genetics and pathogenicity. In: Borkovich K, Ebbole D (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington DC, pp 607–621
Li L, Ma J, Li Y, Wang Z, Gao T, Wang Q (2012) Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber fusarium wilt. Crop Prot 35:29–35. 10.1016/j.cropro.2011.12.004
Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim WB, Woloshuk C, Xie X, Xu JR, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee YH, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park SY, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in fusarium. Nature 464:367–373. 10.1038/nature08850
Malfanova N, Franzil L, Lugtenberg B, Chebotar V, Ongena M (2012) Cyclic lipopeptide profile of the plant-beneficial endophytic bacterium Bacillus subtilis HC8. Arch Microbiol 194:893–899. 10.1007/s00203-012-0823-0
Ministerio de Agricultura C (2016) Agronet-Colombia. In: Red Inf. y Comun. del Sect. Agropecu
Moreno-Velandia C, Kloepper J, Ongena M, et al (2016) Influence of temperature and culture media on growth, lipopeptide production and antagonistic activity of Bacillus amyloliquefaciens Bs006. In: Bardin M, Köhl J (eds) IOBC-WPRS Bulletin. p 161
Okon Levy N, Meller Harel Y, Haile ZM, Elad Y, Rav-David E, Jurkevitch E, Katan J (2015) Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol 64:365–374. 10.1111/ppa.12255
Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. 10.1016/j.tim.2007.12.009
Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny JL, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 9:1084–1090. 10.1111/j.1462-2920.2006.01202.x
Ongena M, Henry G, Thonart P (2009) The roles of cyclic Lipopeptides in the biocontrol activity of Bacillus subtilis. Recent Dev Manag Plant Dis:59–69. 10.1007/978-1-4020-8804-9
Osorio-Guarín JA, Enciso-Rodríguez FE, González C, Fernández-Pozo N, Mueller LA, Barrero LS (2016) Association analysis for disease resistance to Fusarium oxysporum in cape gooseberry (Physalis peruviana L). BMC Genomics 17:248. 10.1186/s12864-016-2568-7
Pertot I, Puopolo G, Hosni T, Pedrotti L, Jourdan E, Ongena M (2013) Limited impact of abiotic stress on surfactin production in planta and on disease resistance induced by Bacillus amyloliquefaciens S499 in tomato and bean. FEMS Microbiol Ecol 86:505–519. 10.1111/1574-6941.12177
Razavi darbar S, Lakzian A (2007) Evaluation of chemical and biological consequences of soil sterilization methods. Casp J Environ Sci 5:87–91
Rodríguez E (2010) Aislamiento y caracterización de cepas de Fusarium oxysporum en uchuva (Physalis peruviana) y evaluación de la patogenicidad en invernadero. Universidad de Cundinamarca, Fusagasugá, Colombia. Undergraduate thesis in Agronomy
Rodríguez E (2013) Caracterización de aislamientos de Fusarium spp. obtenidos de zonas productoras de uchuva (Physalis peruviana) en Cundinamarca y Boyacá. Universidad Nacional de Colombia, Bogotá. MSc thesis in phytopathology
Rowe R, Farley J, Coplin D (1977) Airborne dispersal and recolonization of steamed soil by Fusarium oxysporum in tomato greenhouses. Dis Control pest Manag 67:1513–1517
Sánchez M, Forero P (2009) Reporte de especies del género Fusarium asociados a la uchuva (Physalis pruviana) y descripción de la etiología relacionada con la fusariosis. Universidad Militar Nueva Granada, Bogotá, Colombia. Undergraduate thesis in Biology
Schouten A, van den Berg G, Edel-Hermann V, Steinberg C, Gautheron N, Alabouvette C, de Vos CH (Ric), Lemanceau P, Raaijmakers JM (2004) Defense responses of Fusarium oxysporum to 2,4-diacetylphloroglucinol, a broad-spectrum antibiotic produced by Pseudomonas fluorescens. Mol Plant-Microbe Interact 17:1201–1211
Shi WL, Chen XL, Wang LX, Gong ZT, Li S, Li CL, Xie BB, Zhang W, Shi M, Li C, Zhang YZ, Song XY (2016) Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J Exp Bot 67:2191–2205. 10.1093/jxb/erw023
Simbaqueba J, Catanzariti A-M, González C, Jones DA (2018) Evidence for horizontal gene transfer and separation of effector recognition from effector function revealed by analysis of effector genes shared between cape gooseberry- and tomato-infecting formae speciales of Fusarium oxysporum. Mol Plant Pathol 9:2302–2318. 10.1111/mpp.12700
Singh V, Sanmukh R, Kumar B, Bahadur H (2016) Trichoderma asperellum spore dose depended modulation of plant growth in vegetable. Crops 193:74–86
Smith KP, Handelsman J, Goodman RM (1997) Modeling dose-response relationships in biological control: partitioning host responses to the pathogen and biocontrol agent. Phytopathology 87:720–729. 10.1094/PHYTO.1997.87.7.720
Thatcher LF, Manners JM, Kazan K (2009) Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J 58:927–939. 10.1111/j.1365-313X.2009.03831.x
Van Dam P, Fokkens L, Schmidt SM et al (2016) Effector profiles distinguish formae speciales of Fusarium oxysporum. Environ Microbiol 18:4087–4102. 10.1111/1462-2920.13445
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10. 10.1016/j.soilbio.2007.07.002
Zapata J, Díaz A (2012) Evaluaciones en invernadero y selección de prototipos a base de rizobacterias. In: Díaz A (ed) Estrategias de control biológico de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana). Produmedios, Bogotá, pp 62–70
Zapata J, Díaz A, Caviedes D (2012) Aislamiento y caracterización de rizobacterias. In: Díaz A (ed) Estrategias de control biológico de Fusarium oxysporum en el cultivo de uchuva (Physalis peruviana). Produmedios, Bogotá, pp 27–31
Zhang J, Howell CR, Starr JL (1996) Suppression of Fusarium colonization of cotton roots and fusarium wilt by seed treatments with Gliocladium virens and Bacillus subtilis. Biocontrol Sci Tech 6:175–188. 10.1080/09583159650039377