Article (Scientific journals)
Nyldon words
Charlier, Emilie; Philibert, Manon; Stipulanti, Manon
2019In Journal of Combinatorial Theory. Series A, 167, p. 60-90
Peer Reviewed verified by ORBi
 

Files


Full Text
Nyldon-final.pdf
Author preprint (356.51 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Lyndon words; Factorization of the free monoid; Code; Standard factorization; Lazard sets; Hall sets
Abstract :
[en] The Chen-Fox-Lyndon theorem states that every finite word over a fixed alphabet can be uniquely factorized as a lexicographically nonincreasing sequence of Lyndon words. This theorem can be used to define the family of Lyndon words in a recursive way. If the lexicographic order is reversed in this definition, we obtain a new family of words, which are called the Nyldon words. In this paper, we show that every finite word can be uniquely factorized into a lexicographically nondecreasing sequence of Nyldon words. Otherwise stated, Nyldon words form a complete factorization of the free monoid with respect to the decreasing lexicographic order. Then we investigate this new family of words. In particular, we show that Nyldon words form a right Lazard set.
Disciplines :
Mathematics
Author, co-author :
Charlier, Emilie  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Philibert, Manon
Stipulanti, Manon  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Nyldon words
Publication date :
2019
Journal title :
Journal of Combinatorial Theory. Series A
ISSN :
0097-3165
Publisher :
Elsevier, Atlanta, Georgia
Volume :
167
Pages :
60-90
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 30 January 2019

Statistics


Number of views
76 (19 by ULiège)
Number of downloads
85 (9 by ULiège)

Scopus citations®
 
8
Scopus citations®
without self-citations
6
OpenCitations
 
6
OpenAlex citations
 
7

Bibliography


Similar publications



Contact ORBi