[en] Abstract Historical sea‐ice core chlorophyll‐a (Chla) data are used to describe the seasonal, regional and vertical distribution of ice algal biomass in Antarctic landfast sea ice. The analyses are based on the Antarctic Fast Ice Algae Chlorophyll‐a dataset, a compilation of currently available sea‐ice Chla data from landfast sea‐ice cores collected at circum‐Antarctic nearshore locations between 1970 and 2015. Ice cores were typically sampled from thermodynamically grown first‐year ice and have thin snow depths (mean = 0.052 ± 0.097 m). The dataset comprises 888 ice cores, including 404 full vertical profile cores. Integrated ice algal Chla biomass (range: ‐2 – 219.9 mg m‐2, median = 4.4 mg m‐2, interquartile range = 9.9 mg m‐2) peaks in late spring and shows elevated levels in autumn. The seasonal Chla development is consistent with the current understanding of physical drivers of ice algal biomass, including the seasonal cycle of irradiance and surface temperatures driving landfast sea‐ice growth and melt. Landfast ice regions with reported platelet‐ice formation show maximum ice algal biomass. Ice algal communities in the lower‐most third of the ice cores dominate integrated Chla concentrations during most of the year, but internal and surface communities are important, particularly in winter. Through comparison of biomass estimates based on different sea‐ice sampling strategies, i.e., analysis of full cores versus bottom‐ice section sampling, we identify biases in common sampling approaches and provide recommendations for future survey programs: e.g., the need to sample fast ice over its entire thickness and to measure auxiliary physico‐chemical parameters.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Earth sciences & physical geography
Author, co-author :
Meiners, K. M.
Vancoppenolle, M.
Carnat, G.
Castellani, G.
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Ackley, S. F., Buck, K. R., & Taguchi, S. (1979). Standing crop of algae in the sea ice of the Weddell Sea region. Deep Sea Research Part A. Oceanographic Research Papers, 26(3), 269–281. https://doi.org/10.1016/0198-0149(79)90024-4
Ackley, S. F., & Sullivan, C. W. (1994). Physical controls on the development and characteristics of Antarctic sea ice biological communities—A review and synthesis. Deep Sea Research Part I: Oceanographic Research Papers, 41(10), 1583–1604. https://doi.org/10.1016/0967-0637(94)90062-0
Arrigo, K. R. (2014). Sea ice ecosystems. Annual Review of Marine Science, 6(1), 439–467. https://doi.org/10.1146/annurev-marine-010213135103
Arrigo, K. R. (2017). Sea ice as a habitat for primary producers. In D. N. Thomas (Ed.), Sea ice, (pp. 352–369). Hoboken, NJ: John Wiley. https://doi.org/10.1002/9781118778371.ch14
Arrigo, K. R., Dieckmann, G., Gosselin, M., Robinson, D. H., Fritsen, C. H., & Sullivan, C. W. (1995). High resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: Biomass, nutrient, and production profiles within a dense microalgal bloom. Marine Ecology Progress Series, 127, 255–268. https://doi.org/10.3354/meps127255
Arrigo, K. R., Robinson, D. H., & Sullivan, C. W. (1993). High resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: Photosynthetic and biooptical characteristics of a dense microalgal bloom. Marine Ecology Progress Series, 98, 173–185. https://doi.org/10.3354/meps098173
Aumack, C. F., Juhl, A. R., & Krembs, C. (2014). Diatom vertical migration within land-fast Arctic sea ice. Journal of Marine Systems, 139, 496–504. https://doi.org/10.1016/j.jmarsys.2014.08.013
Campbell, K., Mundy, C., Barber, D., & Gosselin, M. (2015). Characterizing the sea ice algae chlorophyll a—Snow depth relationship over Arctic spring melt using transmitted irradiance. Journal of Marine Systems, 147, 76–84. https://doi.org/10.1016/j.jmarsys.2014.01.008
Campbell, K., Mundy, C. J., Barber, D. G., & Gosselin, M. (2014). Remote estimates of ice algae biomass and their response to environmental conditions during spring melt. Arctic, 67(3), 375. https://doi.org/10.14430/arctic4409
Carnat, G., Zhou, J., Papakyriakou, T., Delille, B., Goossens, T., Haskell, T., Schoemann, V., Fripiat, F., Rintala, J. M., & Tison, J. L. (2014). Physical and biological controls on DMS, P dynamics in ice shelf-influenced fast ice during a winter-spring and a spring-summer transitions. Journal of Geophysical Research: Oceans, 119, 2882–2905. https://doi.org/10.1002/2013JC009381
Castellani, G., Losch, M., Lange, B. A., & Flores, H. (2017). Modeling Arctic sea-ice algae: Physical drivers of spatial distribution and algae phenology. Journal of Geophysical Research: Oceans, 122, 7466–7487. https://doi.org/10.1002/2017JC012828
Cimoli, E., Meiners, K. M., Lund-Hansen, L. C., & Lucieer, V. (2018). Spatial variability in sea-ice algal biomass: An under-ice remote sensing perspective. Advances in Polar Science, 28(4), 268–296
Cota, G. F., & Horne, E. P. (1989). Physical control of arctic ice algal production. Marine Ecology Progress Series, 52, 111–121. https://doi.org/10.3354/meps052111
Cota, G. F., Prinsenberg, S. J., Bennett, E. B., Loder, J. W., Lewis, M. R., Anning, J. L., Watson, N. H. F., & Harris, L. R. (1987). Nutrient fluxes during extended blooms of Arctic ice algae. Journal of Geophysical Research, 92(C2), 1951–1962. https://doi.org/10.1029/JC092iC02p01951
de Jong, J., Schoemann, V., Maricq, N., Mattielli, N., Langhorne, P., Haskell, T., & Tison, J. L. (2013). Iron in land-fast sea ice of McMurdo Sound derived from sediment resuspension and wind-blown dust attributes to primary productivity in the Ross Sea, Antarctica. Marine Chemistry, 157, 24–40. https://doi.org/10.1016/j.marchem.2013.07.001
DeJong, H. B., Dunbar, R. B., Koweek, D. A., Mucciarone, D. A., Bercovici, S. K., & Hansell, D. A. (2017). Net community production and carbon export during the late summer in the Ross Sea, Antarctica. Global Biogeochemical Cycles, 31, 473–491. https://doi.org/10.1002/2016GB005417
DeJong, H. B., Dunbar, R. B., & Lyons, E. A. (2018). Late summer frazil ice-associated algal blooms around Antarctica. Geophysical Research Letters, 45, 826–833. https://doi.org/10.1002/2017GL075472
Delille, B., Jourdain, B., Borges, A. V., Tison, J. L., & Delille, D. (2007). Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnology and Oceanography, 52(4), 1367–1379. https://doi.org/10.4319/lo.2007.52.4.1367
Delille, D., Fiala, M., Kuparinen, J., Kuosa, H., & Plessis, C. (2002). Seasonal changes in microbial biomass in the first-year ice of the Terre Adélie area (Antarctica). Aquatic Microbial Ecology, 28, 257–265. https://doi.org/10.3354/ame028257
Dieckmann, G. S., Arrigo, K., & Sullivan, C. W. (1992). A high-resolution sampler for nutrient and chlorophyll a profiles of the sea ice platelet layer and underlying water column below fast ice in polar oceans: Preliminary results. Marine Ecology Progress Series, 80, 291–300. https://doi.org/10.3354/meps080291
Dieckmann, G. S., Eicken, H., Haas, C., Garrison, D. L., Gleitz, M., Lange, M., Spindler, M., Sullivan, C. W., Thomas, D. N., Weissenberger, J., & Nöthig, E.-M. (1998). A compilation of data on sea ice algal standing crop from the Bellinghausen, Amundsen and Weddell Seas from 1983 to 1994. In M. P. Lizotte, & K. R. Arrigo (Eds.), Antarctic sea ice: Biological Processes, Interactions and Variability (pp. 85–92). Washington, DC: American Geophysical Union. https://doi.org/10.1029/AR073p0085
Drewry, D. J., Jordan, S. R., & Jankowski, E. (1982). Measured properties of the Antarctic ice sheet: Surface configuration, ice thickness, volume and bedrock characteristics. Annals of Glaciology, 3, 83–91. https://doi.org/10.1017/S0260305500002573
Eicken, H., Lange, M. A., & Dieckmann, G. S. (1991). Spatial variability of sea-ice properties in the northwestern Weddell Sea. Journal of Geophysical Research, 96(C6), 10603–10,615. https://doi.org/10.1029/91JC00456
Evans, C. A., O'Reilly, J. E., & Thomas, J. P. (1987). A handbook for the measurements of chlorophyll a and primary production, BIOMASS Sci. Ser. 8, (). College Station: Tex. A&M Univ
Fedotov, V. I., Cherepanov, N. V., & Tyshko, K. P. (1998). Some features of the growth, structure and metamorphism of East Antarctic landfast sea ice. In M. O. Jeffries (Ed.), Antarctic sea ice: Physical processes, interactions and variability (pp. 343–354). Washington, DC: American Geophysical Union
Feltham, D. L., Worster, M. G., & Wettlaufer, J. S. (2002). The influence of ocean flow on newly forming sea ice. Journal of Geophysical Research, 107(C2), 3009. https://doi.org/10.1029/2000JC000559
Fiala, M., Kuosa, H., Kopczyńska, E. E., Oriol, L., & Delille, D. (2006). Spatial and seasonal heterogeneity of sea ice microbial communities in the first-year ice of Terre Adélie area (Antarctica). Aquatic Microbial Ecology, 43, 95–106. https://doi.org/10.3354/ame043095
Fraser, A. D., Massom, R. A., Michael, K. J., Galton-Fenzi, B. K., & Lieser, J. L. (2012). East Antarctic landfast sea ice distribution and variability, 2000–08. Journal of Climate, 25, 1137–1156
Fripiat, F., Sigman, D. M., Massé, G., & Tison, J. L. (2015). High turnover rates indicated by changes in the fixed N forms and their stable isotopes in Antarctic landfast sea ice. Journal of Geophysical Research: Oceans, 120, 3079–3097. https://doi.org/10.1002/2014JC010583
Garrison, D. L., & Buck, K. R. (1986). Organism losses during ice melting: A serious bias in sea ice community studies. Polar Biology, 6(4), 237–239. https://doi.org/10.1007/BF00443401
Giles, A. B., Massom, R. A., & Lytle, V. I. (2008). Fast-ice distribution in East Antarctica during 1997 and 1999 determined using RADARSAT data. Journal of Geophysical Research, 113, C02S14. https://doi.org/10.1029/2007JC004139
Gosselin, M., Legendre, L., Demers, S., & Ingram, R. G. (1985). Responses of sea-ice microalgae to climatic and fortnightly tidal energy inputs (Manitounuk Sound, Hudson Bay). Canadian Journal of Fisheries and Aquatic Sciences, 42(5), 999–1006. https://doi.org/10.1139/f85-125
Gough, A. J., Mahoney, A. R., Langhorne, P. J., Williams, M. J., Robinson, N. J., & Haskell, T. G. (2012). Signatures of supercooling: McMurdo Sound platelet ice. Journal of Glaciology, 58(207), 38–50. https://doi.org/10.3189/2012JoG10J218
Grossi, S. M., Kottmeier, S. T., Moe, R. L., Taylor, G. T., & Sullivan, C. W. (1987). Sea ice microbial communities. VI. Growth and primary production in bottom ice under graded snow cover. Marine Ecology Progress Series, 35, 153–164. https://doi.org/10.3354/meps035153
Grossi, S. M., & Sullivan, C. W. (1985). Sea ice microbial communities. V. The vertical zonation of diatoms in an Antarctic fast ice community. Journal of Phycology, 21, 401–409
Grotti, M., Soggia, F., Ianni, C., & Frache, R. (2005). Trace metals distributions in coastal sea ice of Terra Nova Bay, Ross Sea, Antarctica. Antarctic Science, 17(2), 289–300. https://doi.org/10.1017/S0954102005002695
Günther, S., & Dieckmann, G. S. (1999). Seasonal development of algal biomass in snow-covered fast ice and the underlying platelet layer in the Weddell Sea, Antarctica. Antarctic Science, 11(3), 305–315
Günther, S., Gleitz, M., & Dieckmann, G. S. (1999). Biogeochemistry of Antarctic sea ice: A case study on platelet ice layers at Drescher inlet, Weddell Sea. Marine Ecology Progress Series, 117, 1–13
Heil, P., & Allison, I. (2002). Long-term fast-ice variability off Davis and Mawson stations, Antarctica. Ice in the Environment: Proceedings of the 16th IAHR International Symposium on Ice, 1, 360–367
Heil, P., Allison, I., & Lytle, V. I. (1996). Seasonal and interannual variations of the oceanic heat flux under a landfast Antarctic sea ice cover. Journal of Geophysical Research, 101(C11), 25,741–25,752. https://doi.org/10.1029/96JC01921
Heil, P., Gerland, S., & Granskog, M. A. (2011). An Antarctic monitoring initiative for fast ice and comparison with the Arctic. The Cryosphere Discussion, 5(5), 2437–2463. https://doi.org/10.5194/tcd-5-2437-2011
Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W., & Strickland, J. D. (1965). Fluorometric determination of chlorophyll. ICES Journal of Marine Science, 30(1), 3–15. https://doi.org/10.1093/icesjms/30.1.3
Horner, R., Ackley, S. F., Dieckmann, G. S., Gulliksen, B., Hoshiai, T., Legendre, L., Melnikov, I. A., Reeburgh, W. S., Spindler, M., & Sullivan, C. W. (1992). Ecology of sea ice biota. Polar Biology, 12, 417–427
Hoshiai, T. (1972). Diatom distribution in sea ice near McMurdo and Syowa Stations. Antarctic Journal of the United States, 7, 84
Hoshiai, T. (1977). Seasonal change of ice communities in the sea ice near Syowa Station Antarctica. In M. J. Dunbar (Ed.), Polar oceans, (pp. 307–317). Calgary: Arctic Institute of North America
Hoshiai, T. (1981). The plant pigments, chlorinity and pH distribution in the sea ice of the Syowa station area in 1970. Japanese Antarctic Research Expeditions Data Report (Marine Biology), 67, 1–42
Kohlbach, D., Graeve, M., Lange, B. A., David, C., Schaafsma, F. L., van Franeker, J. A., Vortkamp, M., Brandt, A., & Flores, H. (2018). Dependency of Antarctic zooplankton species on ice algae-produced carbon suggests a sea ice-driven pelagic ecosystem during winter. Global Change Biology, 24(10), 4667–4681. https://doi.org/10.1111/gcb.14392
Kohlbach, D., Lange, B., Schaafsma, F., David, C., Vortkamp, M., Graeve, M., van Franeker, J. A., Krumpen, T., & Flores, H. (2017). Ice algae-produced carbon is critical for overwintering of Antarctic krill Euphausia superba. Frontiers in Marine Science, 4, 1–16. https://doi.org/10.3389/fmars.2017.00310
Krembs, C., Gradinger, R., & Spindler, M. (2000). Implications of brine channel geometry and surface area for the interaction of sympagic organisms in Arctic sea ice. Journal of Experimental Marine Biology and Ecology, 243(1), 55–80. https://doi.org/10.1016/S0022-0981(99)00111-2
Lange, B. A., Katlein, C., Castellani, G., Fernandez-Mendez, M., Nicolaus, M., Peeken, I., & Flores, H. (2017). Characterizing spatial variability of ice algal chlorophyll a and net primary production between sea ice habitats using horizontal profiling platforms. Frontiers in Marine Science https://doi.org/10.3389/fmars.2017.00349, 4, 1–23
Lange, B. A., Katlein, C., Nicolaus, M., Peeken, I., & Flores, H. (2016). Sea ice algae chlorophyll a concentrations derived from under-ice spectral radiation profiling platforms. Journal of Geophysical Research: Oceans, 121, 8511–8534. https://doi.org/10.1002/2016JC011991
Lange, B. A., Michel, C., Beckers, J. F., Casey, J. A., Flores, H., Hatam, I., Meisterhans, G., Niemi, A., & Haas, C. (2015). Comparing springtime ice-algal chlorophyll a and physical properties of multi-year and first-year sea ice from the Lincoln Sea. PLoS One, 10(4), e0122418. https://doi.org/10.1371/journal.pone.0122418
Langhorne, P. J., Hughes, K. G., Gough, A. J., Smith, I. J., Williams, M. J. M., Robinson, N. J., Stevens, C. L., Rack, W., Price, D., Leonard, G. H., Mahoney, A. R., Haas, C., & Haskell, T. G. (2015). Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux. Geophysical Research Letters, 42, 5442–5451. https://doi.org/10.1002/2015GL064508
Lannuzel, D., van der Merwe, P. C., Townsend, A. T., & Bowie, A. R. (2014). Size fractionation of iron, manganese and aluminium in Antarctic fast ice reveals a lithogenic origin and low iron solubility. Marine Chemistry, 161, 47–56. https://doi.org/10.1016/j.marchem.2014.02.006
Leonard, G. H., Purdie, C. R., Langhorne, P. J., Haskell, T. G., Williams, M. J. M., & Frew, R. D. (2006). Observations of platelet ice growth and oceanographic conditions during the winter of 2003 in McMurdo Sound, Antarctica. Journal of Geophysical Research, 111, C04012. https://doi.org/10.1029/2005JCC002952
Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin, M., Juul-Pedersen, T., & Gradinger, R. (2015). Arctic spring awakening—Steering principles behind the phenology of vernal ice algal blooms. Progress in Oceanography, 139, 151–170. https://doi.org/10.1016/j.pocean.2015.07.012
Lieser, J. L., Curran, M. A. J., Bowie, A. R., Davidson, A. T., Doust, S. J., Fraser, A. D., Galton-Fenzi, B. K., Massom, R. A., Meiners, K. M., Melbourne-Thomas, J., Reid, P. A., Strutton, P. G., Vance, T. R., Vancoppenolle, M., Westwood, K. J., & Wright, S. W. (2015). Antarctic slush-ice algal accumulation not quantified through conventional satellite imagery: Beware the ice of March. The Cryosphere Discuss, 9, 6187–6222. https://doi.org/10.5194/tcd-9-6187-2015
Maksym, T., & Markus, T. (2008). Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth. Journal of Geophysical Research, 113, C02S12. https://doi.org/10.1029/2006JC004085
Massom, R. A., Hill, K. L., Lytle, V. I., Worby, A. P., Paget, M. J., & Allison, I. (2001). Effects of regional fast-ice and iceberg distributions on the behaviour of the Mertz Glacier polynya, East Antarctica. Annals of Glaciology, 33, 391–398. https://doi.org/10.3189/172756401781818518
McConville, M. J., Mitchell, C., & Wetherbee, R. (1985). Patterns of carbon assimilation in a microalgal community from annual sea ice, East Antarctica. Polar Biology, 4(3), 135–141. https://doi.org/10.1007/BF00263876
McConville, M. J., & Wetherbee, R. (1983). The bottom-ice microalgal community from annual ice in the inshore waters of East Antarctica. Journal of Phycology, 19(4), 431–439. https://doi.org/10.1111/j.0022-3646.1983.00431.x
McMinn, A., Ashworth, C., & Ryan, K. G. (2000). In situ net primary productivity of an Antarctic fast ice bottom algal community. Aquatic Microbial Ecology, 21, 177–185. https://doi.org/10.3354/ame021177
McMinn, A., Martin, A., & Ryan, K. (2010). Phytoplankton and sea ice algal biomass and physiology during the transition between winter and spring (McMurdo Sound, Antarctica). Polar Biology, 33(11), 1547–1556. https://doi.org/10.1007/s00300-010-0844-6
McMinn, A., Pankowskii, A., Ashworth, C., Bhagooli, R., Ralph, P., & Ryan, K. (2010). In situ net primary productivity and photosynthesis of Antarctic sea ice algal, phytoplankton and benthic algal communities. Marine Biology, 157(6), 1345–1356. https://doi.org/10.1007/s00227-010-1414-8
McMinn, A., Skerratt, J., Trull, T., Ashworth, C., & Lizotte, M. (1999). Nutrient stress gradient in the bottom 5 cm of fast ice, McMurdo Sound, Antarctica. Polar Biology, 21(4), 220–227. https://doi.org/10.1007/s003000050356
McMullin, R. M., Wing, S. R., Wing, L. C., & Shatova, O. A. (2017). Trophic position of Antarctic ice fishes reflects food web structure along a gradient in sea ice persistence. Marine Ecology Progress Series, 564, 87–98. https://doi.org/10.3354/meps12031
Meiners, K. M., Arndt, S., Bestley, S., Krumpen, T., Ricker, R., Milnes, M., Newbery, K., Freier, U., Jarman, S., King, R., Proud, R., Kawaguchi, S., & Meyer, B. (2017). Antarctic pack-ice algal distribution: Floe-scale spatial variability and predictability from physical parameters. Geophysical Research Letters, 44, 7382–7390. https://doi.org/10.1002/2017GL074346
Meiners, K. M., & Michel, C. (2017). Dynamics of nutrients, dissolved organic matter and exopolymers in sea ice. In D. N. Thomas (Ed.), Sea ice (pp. 415–432). Hoboken, NJ: John Wiley. https://doi.org/10.1002/9781118778371.ch17
Meiners, K. M., Vancoppenolle, M., Thanassekos, S., Dieckmann, G. S., Thomas, D. N., Tison, J. L., Arrigo, K. R., Garrison, D. L., McMinn, A., Lannuzel, D., van der Merwe, P., Swadling, K. M., Smith, W. O. Jr., Melnikov, I., & Raymond, B. (2012). Chlorophyll a in Antarctic sea ice from historical ice core data. Geophysical Research Letters, 39, L21602. https://doi.org/10.1029/2012GL053478
Melbourne-Thomas, J., Meiners, K. M., Mundy, C. J., Schallenberg, C., Tattersall, K. L., & Dieckmann, G. S. (2015). Algorithms to estimate Antarctic sea ice algal biomass from under-ice irradiance spectra at regional scales. Marine Ecology Progress Series, 536, 107–121. https://doi.org/10.3354/meps11396
Miller, L. A., Fripiat, F., Else, B. G. T., Bowman, J. S., Brown, K. A., Collins, R. E., Ewert, M., Fransson, A., Gosselin, M., Lannuzel, D., Meiners, K. M., Michel, C., Nishioka, J., Nomura, D., Papadimitriou, S., Russell, L. M., Sørensen, L. L., Thomas, D. N., Tison, J. L., vanLeeuwe, M. A., Vancoppenolle, M., Wolff, E. W., & Zhou, J. (2015). Methods for biogeochemical studies of sea ice: The state of the art, caveats, and recommendations. Elementa-Oceans, 3, 1–53. https://doi.org/10.12952/journal.elementa.000038
Mundy, C. J., Barber, D. G., & Michel, C. (2005). Variability of snow and ice thermal, physical and optical properties pertinent to sea ice algae biomass during spring. Journal of Marine Systems, 58(3-4), 107–120. https://doi.org/10.1016/j.jmarsys.2005.07.003
Nicolaus, M., Hudson, S. R., Gerland, S., & Munderloh, K. (2010). A modern concept for autonomous and continuous measurements of spectral albedo and transmittance of sea ice. Cold Regions Science and Techology, 62(1), 14–28. https://doi.org/10.1016/j.coldregions.2010.03.001
Niemi, A., Michel, C., Hille, K., & Poulin, M. (2011). Protist assemblages in winter sea ice: Setting the stage for the spring ice algal bloom. Polar Biology, 34(12), 1803–1817. https://doi.org/10.1007/s00300-011-1059-1
Nihashi, S., & Ohshima, K. I. (2015). Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. Journal of Climate, 28(9), 3650–3670. https://doi.org/10.1175/JCLI-D-14-00369.1
Nomura, D., Kasamatsu, N., Tateyama, K., Kudoh, S., & Fukuchi, M. (2011). DMSP and DMS in coastal fast ice and under-ice water of Lützow-Holm Bay, Eastern Antarctica. Continental Shelf Research, 31, 1377–1383
Perovich, D. K. (2017). Sea ice and sunlight. In D. N. Thomas (Ed.), Sea ice, (pp. 110–137). Hobok en, NJ, John Wiley. https://doi.org/10.1002/9781118778371.ch4
Remy, J. P., Becquevort, S., Haskell, T. G., & Tison, J. L. (2008). Impact of the B-15 iceberg “stranding event” on the physical and biological properties of sea ice in McMurdo Sound, Ross Sea, Antarctica. Antarctic Science, 20(06), 593–604. https://doi.org/10.1017/S0954102008001284
Rintala, J. M., Piiparinen, J., Blomster, J., Majaneva, M., Müller, S., Uusikivi, J., & Autio, R. (2014). Fast direct melting of brackish sea-ice samples results in biologically more accurate results than slow buffered melting. Polar Biology, 37(12), 1811–1822. https://doi.org/10.1007/s00300-014-1563-1
Robinson, D. H., Arrigo, K. R., Kolber, Z., Gosselin, M., & Sullivan, C. W. (1998). Photophysiological evidence of nutrient limitation of platelet ice algae in McMurdo Sound, Antarctica. Journal of Phycology, 34(5), 788–797. https://doi.org/10.1046/j.1529-8817.1998.340788
Schaafsma, F. L., Kohlbach, D., David, C., Lange, B. A., Graeve, M., Flores, H., & vanFraneker, J. (2017). Spatio-temporal variability in the winter diet of larval and juvenile Antarctic krill, Euphausia superba, in ice-covered waters. Marine Ecology Progress Series, 580, 101–115. https://doi.org/10.3354/meps12309
Schmidt, K., Brown, T. A., Belt, S. T., Ireland, L. C., Taylor, K. W. R., Thorpe, S. E., Ward, P., & Atkinson, A. (2018). Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25. Biogeosciences, 15(7), 1987–2006. https://doi.org/10.5194/bg-15-1987-2018
Shine, K. P. (1984). Parametrization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Quarterly Journal of the Royal Meteorological Society, 110(465), 747–764. https://doi.org/10.1002/qj.49711046511
Smetacek, V., Scharek, R., Gordon, L. I., Eicken, H., Fahrbach, E., Rohardt, G., & Moore, S. (1992). Early spring phytoplankton blooms in ice platelet layers of the southern Weddell Sea, Antarctica. Deep Sea Research Part A. Oceanographic Research Papers, 39(2), 153–168. https://doi.org/10.1016/0198-0149(92)90102-Y
Smith, I. J., Langhorne, P. J., Haskell, T. G., Trodahl, H. J., Frew, R., & Ross Vennell, M. (2001). Platelet ice and the land-fast sea ice of McMurdo Sound, Antarctica. Annals of Glaciology, 33, 21–27. https://doi.org/10.3189/172756401781818365
Stoecker, D. K., Gustafson, D. E., Black, M., & Baier, C. T. (1998). Population dynamics of microalgae in the upper land-fast sea ice at a snow-free location. Journal of Phycology, 34(1), 60–69. https://doi.org/10.1046/j.1529-8817.1998.340060.x
Sturm, M., & Massom, R. A. (2017). Snow in the sea ice system: Friend or foe? In D. N. Thomas (Ed.), Sea ice (pp. 65–109). Hoboken, NJ: John Wiley. https://doi.org/10.1002/9781118778371.ch3
Swadling, K. M., McKinnon, A. D., De'ath, G., & Gibson, J. A. E. (2004). Life cycle plasticity and differential growth and development in marine and lacustrine populations of an Antarctic copepod. Limnology and Oceanography, 49(3), 644–655. https://doi.org/10.4319/lo.2004.49.3.0644
Swadling, K. M., McPhee, A. D., & McMinn, A. (2000). Spatial distribution of copepods in fast ice of eastern Antarctica. Polar Bioscience, 13, 55–65
Tison, J. L., Delille, B., & Papadimitriou, S. (2017). Gases in sea ice. In D. N. Thomas (Ed.), Sea ice, (pp. 433–471). Hoboken, NJ: John Wiley. https://doi.org/10.1002/9781118778371.ch18
Tison, J. L., Schwegmann, S., Dieckmann, G., Rintala, J. M., Meyer, H., Moreau, S., Vancoppenolle, M., Nomura, D., Engberg, S., Blomster, L. J., Hendricks, S., Uhlig, C., Luhtanen, A. M., de Jong, J., Janssens, J., Carnat, G., Zhou, J., & Delille, B. (2017). Biogeochemical impact of snow cover and cyclonic intrusions on the winter Weddell Sea ice pack. Journal of Geophysical Research: Oceans, 122, 9548–9571. https://doi.org/10.1002/2017JC013288
Ushio, S. (2006). Factors affecting fast-ice break-up frequency in Lützow-Holm Bay, Antarctica. Annals of Glaciology, 44, 177–182. https://doi.org/10.3189/172756406781811835
van der Merwe, P., Lannuzel, D., Bowie, A. R., & Meiners, K. M. (2011). High temporal resolution observations of spring fast ice melt and seawater iron enrichment in East Antarctica. Journal of Geophysical Research, 116, G03017. https://doi.org/10.1029/2010JG001628
van der Merwe, P., Lannuzel, D., Mancuso Nichols, C., Meiners, K. M., Heil, P., et al. (2009). Biogeochemical observations during the winter-spring transition in East Antarctic sea ice: Evidence of iron and exopolysaccharide controls. Marine Chemistry, 115(3-4), 163–175. https://doi.org/10.1016/j.marchem.2009.08.001
van Leeuwe, M. A., Tedesco, L., Arrigo, K. R., Assmy, P., Campbell, K., Meiners, K. M., Rintala, J. M., Selz, V., Thomas, D. N., Stefels, J., & Deming, J. W. (2018). Microalgal community structure and primary production in Arctic and Antarctic sea ice: A synthesis. Elementa: Oceans, 6, 1–25. https://doi.org/10.1525/elementa.267
van Leeuwe, M. A., Villerius, L. A., Roggeveld, J., Visser, R. J. W., & Stefels, J. (2006). An optimized method for automated analysis of algal pigments by HPLC. Marine Chemistry, 102(3-4), 267–275. https://doi.org/10.1016/j.marchem.2006.05.003
Vancoppenolle, M. (2017, Updated 2018). The BEPSII sea ice core analyser. (https://pagesperso.locean-ipsl.upmc.fr/mvlod/)
Vancoppenolle, M., Meiners, K. M., Michel, C., Bopp, L., Brabant, F., Carnat, G., Delille, B., Lannuzel, D., Madec, G., Moreau, S., Tison, J. L., & van der Merwe, P. (2013). Role of sea ice in global biogeochemical cycles: Emerging views and challenges. Quaternary Science Reviews, 79, 207–230. https://doi.org/10.1016/j.quascirev.2013.04.011
Vermeulen, F. A. H. (2013). The influences of nutrients and snow on the spatial and temporal variability of sea ice algae, PhD Thesis, Victoria University of Wellington, New Zealand, pp. 1–165, http://hdl.handle.net/10063/2940
Watanabe, K., Satoh, H., Takahashi, E., & Kanda, H. (1990). Pigment data of sea ice cores collected from fast ice area near Syowa station, Antarctica, from March 1983 to January 1984 (JARE 24). Japanese Antarctic Research Expeditions Data Report (Marine Biology), 16, 1–88
Welch, H. E., & Bergman, M. A. (1989). Seasonal development of ice algae and its prediction from environmental factors near Resolute, N.W.T., Canada. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1973–1804
Whitaker, T. M., & Richardson, M. G. (1980). Morphology and chemical composition of a natural population of an ice-associated Antarctic diatom Navicula glaciei. Journal of Phycology, 16(2), 250–257. https://doi.org/10.1111/j.1529-8817.1980.tb03027.x
Wing, S. R., McLeod, R. J., Leichter, J. J., Frew, R. D., & Lamare, M. D. (2012). Sea ice microbial production supports Ross Sea benthic communities: Influence of a small but stable subsidy. Ecology, 933, 14–323
Wongpan, P., Meiners, K. M., Langhorne, P. J., Heil, P., Smith, I. J., Leonard, G. H., Massom, R. A., Clementson, L. A., & Haskell, T. G. (2018). Estimation of Antarctic land-fast sea ice algal biomass and snow thickness from under-ice radiance spectra in two contrasting areas. Journal of Geophysical Research: Oceans, 123, 1907–1923. https://doi.org/10.1002/2017JC013711
Worby, A. P., Geiger, C. A., Paget, M. J., Van Woert, M. L., Ackley, S. F., & DeLiberty, T. L. (2008). Thickness distribution of Antarctic sea ice. Journal of Geophysical Research, 113, C05S92. https://doi.org/10.1029/2007JC004254
World Meteorological Organization (1970). WMO sea-ice nomenclature. Terminology, codes and illustrated glossary. Geneva Secretariat of the World Meteorological Organization Technical Report, 259, 1–147
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.