Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation
Gaudel, A.; Cooper, O. R.; Ancellet, G.et al.
2018 • In Elementa: Science of the Anthropocene, 6 (1), p. 39
atmospheric composition and chemistry; tropospheric ozone; ground-level ozone; ozone trends; global tropospheric ozone burden
Abstract :
[en] The Tropospheric Ozone Assessment Report (TOAR) is an activity of the International Global Atmospheric Chemistry Project. This paper is a component of the report, focusing on the present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Utilizing the TOAR surface ozone database, several figures present the global distribution and trends of daytime average ozone at 2702 non-urban monitoring sites, highlighting the regions and seasons of the world with the greatest ozone levels. Similarly, ozonesonde and commercial aircraft observations reveal ozone’s distribution throughout the depth of the free troposphere. Long-term surface observations are limited in their global spatial coverage, but data from remote locations indicate that ozone in the 21st century is greater than during the 1970s and 1980s. While some remote sites and many sites in the heavily polluted regions of East Asia show ozone increases since 2000, many others show decreases and there is no clear global pattern for surface ozone changes since 2000. Two new satellite products provide detailed views of ozone in the lower troposphere across East Asia and Europe, revealing the full spatial extent of the spring and summer ozone enhancements across eastern China that cannot be assessed from limited surface observations. Sufficient data are now available (ozonesondes, satellite, aircraft) across the tropics from South America eastwards to the western Pacific Ocean, to indicate a likely tropospheric column ozone increase since the 1990s. The 2014–2016 mean tropospheric ozone burden (TOB) between 60˚N–60˚S from five satellite products is 300 Tg ± 4%. While this agreement is excellent, the products differ in their quantification of TOB trends and further work is required to reconcile the differences. Satellites can now estimate ozone’s global long-wave radiative effect, but evaluation is difficult due to limited in situ observations where the radiative effect is greatest.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Gaudel, A.
Cooper, O. R.
Ancellet, G.
Barret, B.
Boynard, A.
Burrows, J. P.
Clerbaux, C.
Coheur, P.-F.
Cuesta, J.
Cuevas, E.
Doniki, S.
Dufour, G.
Ebojie, F.
Foret, G.
Garcia, O.
Granados Muños, M. J.
Hannigan, J. W.
Hase, F.
Huang, G.
Hassler, B.
Hurtmans, D.
Jaffe, D.
Jones, N.
Kalabokas, P.
Kerridge, B.
Kulawik, S. S.
Latter, B.
Leblanc, T.
Le Flochmoën, E.
Lin, W.
Liu, Jian
Liu, X.
Mahieu, Emmanuel ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation
Akritidis, D, et al. 2016. On the role of tropopause folds in summertime tropospheric ozone over the eastern Mediterranean and the Middle East. Atmos. Chem. Phys. 16: 14025-14039. DOI: https://doi.org/10.5194/acp-16-14025-2016
Ancellet, G and Beekmann, M. 1997. Evidence for changes in the ozone concentrations in the free troposphere over Southern France from 1976 to 1995. Atmos. Environ. 31: 2835-851. DOI: https://doi.org/10.1016/S1352-2310(97)00032-0
Andrey, J, Cuevas, E, Parrondo, MC, Alonso-Pérez, S, Redondas, A and Gil-Ojeda, M. 2014. Quantification of ozone reductions within the Saharan air layer through a 13-year climatologic analysis of ozone profiles. Atmospheric Environment 84: 28-34. DOI: https://doi.org/10.1016/j.atmosenv.2013.11.030
Archibald, A, Elshorbany, Y, et al. 2018. Tropospheric Ozone Assessment Report: Critical review of the present-day and near-future tropospheric ozone budget. Manuscript in preparation.
Attmannspacher, W and Dütsch, HU. 1970. International ozone sonde intercomparison at the observatory Hohenpeissenberg 19 January-5 February 1970, Offenbach am Main Selbstverl. des Dt. Wetterdienstes, 11, 74 S.-Berichte des Deutschen Wetterdienstes 120, MAB0014.001: MOP Per 18(120). MAB0455.001: 120, ISBN: 3881480951.
August, T, et al. 2012. IASI on Metop-A: Operational Level 2 retrievals after five years in orbit. Journal of Quantitative Spectroscopy and Radiative Transfer 114(11): 1340-1371. DOI: https://doi.org/10.1016/j.jqsrt.2012.02.028
Balashov, NV, Thompson, AM, Piketh, SJ and Langerman, KE. 2014. Surface ozone variability and trends over the South African Highveld from 1990 to 2007. J. Geophys. Res. Atmos. 119: 4323-4342. DOI: https://doi.org/10.1002/2013JD020555
Banerjee, A, et al. 2016. Drivers of changes in stratospheric and tropospheric ozone between year 2000 and 2100. Atmos. Chem. Phys. 16: 2727-2746. DOI: https://doi.org/10.5194/acp-16-2727-2016
Barnes, EA, Fiore, AM and Horowitz, LW. 2016. Detection of trends in surface ozone in the presence of climate variability. J. Geophys. Res. Atmos. 121: 6112-6129. DOI: https://doi.org/10.1002/2015JD024397
Barret, B, Le Flochmoen, E, Sauvage, B, Pavelin, E, Matricardi, M and Cammas, JP. 2011. The detection of post-monsoon tropospheric ozone variability over south Asia using IASI data. Atmos. Chem. Phys. 11: 9533-9548. DOI: https://doi.org/10.5194/acp-11-9533-2011
Beer, R, et al. 2001. Tropospheric emission spectrometer for the Earth Observing System's Aura satellite. Appl. Opt. 40: 2356-2367. DOI: https://doi.org/10.1364/AO.40.002356
Berntsen, TK, Isaksen, ISA, Myhre, G, Fuglestvedt, J, Stordal, F, Larsen, T, Freckleton, R and Shine, KP. 1997. Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing. J. Geophys. Res. 102: 28101-28126. DOI: https://doi.org/10.1029/97JD02226
Bethan, S, Vaughan, G and Reid, SJ. 1996. A comparison of ozone and thermal tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Q. J. Royal Met. Soc. 122: 929-944. DOI: https://doi.org/10.1002/qj.49712253207
Blunden, J and Arndt, DS. (eds) 2017. State of the Climate in 2016. Bull. Amer. Meteor. Soc. 98(8): Si-S277. DOI: https://doi.org/10.1175/2017BAMSStateoftheClimate.1
Borbas, EE and Ruston, BC. 2010. The RTTOV UWiremis IR land surface emissivity module, AS Mission Report NWPSAF-MO-VS-042, EUMETSAT Numerical Weather Prediction Satellite Applications Facility, Met Office, Exeter, U.K.
Bovensmann, H, Burrows, JP, Buchwitz, M, Frerick, J, Noël, S, Rozanov, VV, Chance, KV and Goede, APH. 1999. SCIAMACHY: mission objectives and measurement modes. J. Atmos. Sci. 56: 127-150. DOI: https://doi.org/10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
Bowman, K and Henze, DK. 2012. Attribution of direct ozone radiative forcing to spatially resolved emissions. Geophys. Res. Lett. 39(L2): 2704. DOI: https://doi.org/10.1029/2012GL053274
Bowman, KW. 2013. Toward the next generation of air quality monitoring: Ozone. Atmos. Environ. 80: 571-583. DOI: https://doi.org/10.1016/j.atmosenv.2013.07.007
Bowman, KW, et al. 2013. Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations. Atmos. Chem. Phys. 13: 4057-4072. DOI: https://doi.org/10.5194/acp-13-4057-2013
Boynard, A, et al. 2016. Seven years of IASI ozone retrievals from FORLI: validation with independent total column and vertical profile measurements. Atmos. Meas. Tech. 9: 4327-4353. DOI: https://doi.org/10.5194/amt-9-4327-2016
Boynard, A, Hurtmans, D, Garane, K, Goutail, F, Hadji-Lazaro, J, Koukouli, ME, Wespes, C, Keppens, A, Pommereau, J-P, Pazmino, A, Balis, D, Loyola, D, Valks, P, Coheur, P-F and Clerbaux, C. 2018. Validation of the IASI FORLI/Eumetsat ozone products using satellite (GOME-2), ground-based (Brewer-Dobson, SAOZ) and ozonesonde measurements. Atmos. Meas. Tech. Discuss., in review. DOI: https://doi.org/10.5194/amt-2017-461
Brasseur, GP and Prinn, RG. 2003. Atmospheric Chemistry in a Changing World: An Integration and Synthesis of a Decade of Tropospheric Chemistry Research; the International Global Atmospheric Chemistry Project of the International Geosphere-Biosphere Programme. Springer Science & Business Media. DOI: https://doi.org/10.1007/978-3-642-18984-5
Brown-Steiner, B and Hess, P. 2011. Asian influence on surface ozone in the United States: A comparison of chemistry, seasonality, and transport mechanisms. J. Geophys. Res. 116(D17): 309. DOI: https://doi.org/10.1029/2011JD015846
Burrows, JP, et al. 1999. The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results. J. Atmos. Sci. 56(2): 151-175. DOI: https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
Burrows, JP, Hölzle, E, Goede, A, Visser, H and Fricke, W. 1995. SCIAMACHY-scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronaut. 35: 445-451. DOI: https://doi.org/10.1016/0094-5765(94)00278-T
Burrows, JP, Platt, U and Borrell, P. 2011. Tropospheric Remote Sensing from Space. In: The Remote Sensing of Tropospheric Composition from Space. Springer: Berlin Heidelberg, 1-65. DOI: https://doi.org/10.1007/978-3-642-14791-3-1
Chang, K-L, Petropavlovskikh, I, Cooper, OR, Schultz, MG and Wang, T. 2017. Regional trend analysis of surface ozone observations from monitoring networks in eastern North America, Europe and East Asia. Elem Sci Anth. 5(50). DOI: https://doi.org/10.1525/elementa.243
Clerbaux, C, Boynard, A, Clarisse, L, George, M, Hadji-Lazaro, J, Herbin, H, Hurtmans, D, Pommier, M, Razavi, A, Turquety, S, Wespes, C and Coheur, P-F. 2009. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 9: 6041-6054. DOI: https://doi.org/10.5194/acp-9-6041-2009
Cohen, Y, et al. 2018. Climatology and long-term evolution of ozone and carbon monoxide in the UTLS at northern mid-latitudes, as seen by IAGOS from 1995 to 2013. Atmos. Chem. Phys., 18: 5415-5453. DOI: https://doi.org/10.5194/acp-18-5415-2018
Coman, A, Foret, G, Beekmann, M, Eremenko, M, Dufour, G, Gaubert, B, Ung, A, Schmechtig, C, Flaud, J-M and Bergametti, G. 2012. Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe. Atmos. Chem. Phys. 12: 2513-2532. DOI: https://doi.org/10.5194/acp-12-2513-2012
Cooper, M, Martin, RV, Livesey, NJ, Degenstein, DA and Walker, KA. 2013. Analysis of satellite remote sensing observations of low ozone events in the tropical upper troposphere and links with convection. Geophys. Res. Lett. DOI: https://doi.org/10.1002/grl.50717
Cooper, OR, Gao, R-S, Tarasick, D, Leblanc, T and Sweeney, C. 2012. Long-term ozone trends at rural ozone monitoring sites across the United States, 1990-2010. J. Geophys. Res. 117(D22): 307 DOI: https://doi.org/10.1029/2012JD018261
Cooper, OR, Parrish, DD, Ziemke, J, Balashov, NV, Cupeiro, M, Galbally, IE, Gilge, S, Horowitz, L, Jensen, NR, Lamarque, J-F, Naik, V, Oltmans, SJ, Schwab, J, Shindell, DT, Thompson, AM, Thouret, V, Wang, Y and Zbinden, RM. 2014. Global distribution and trends of tropospheric ozone: An observation-based review. Elementa: Science of the Anthropocene 2. DOI: https://doi.org/10.12952/journal.elementa.000029
Cristofanelli, P, et al. 2015. Long-term surface ozone variability at Mt. Cimone WMO/GAW global station (2165 m a.s.l., Italy). Atmos. Environ. 101: 23-33. DOI: https://doi.org/10.1016/j.atmosenv.2014.11.012
Cristofanelli, P, Busetto, M, Calzolari, F, Ammoscato, I, Gullì, D, Dinoi, A, et al. 2017. Investigation of reactive gases and methane variability in the coastal boundary layer of the central Mediterranean basin. Elem Sci Anth. 5: 12. DOI: https://doi.org/10.1525/elementa.216
Cristofanelli, P, Fierli, F, Marinoni, A, Calzolari, F, Duchi, R, Burkhart, J, Stohl, A, Maione, M, Arduini, J and Bonasoni, P. 2013. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.). Atmos. Chem. Phys. 13: 15-30. DOI: https://doi.org/10.5194/acp-13-15-2013
Cuesta, J, Eremenko, M, Liu, X, Dufour, G, Cai, Z, Höpfner, M, von Clarmann, T, Sellitto, P, Foret, G, Gaubert, B, Beekmann, M, Orphal, J, Chance, K, Spurr, R and Flaud, J-M. 2013. Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe. Atmos. Chem. Phys. 13: 9675-9693. DOI: https://doi.org/10.5194/acp-13-9675-2013
Cuevas, E, González, Y, Rodríguez, S, Guerra, JC, Gómez-Peláez, AJ, Alonso-Pérez, S, Bustos, J and Milford, C. 2013. Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere. Atmos. Chem. Phys. 13: 1973-1998. DOI: https://doi.org/10.5194/acp-13-1973-2013
De Wachter, E, Barret, B, Le Flochmoen, E, Pavelin, E, Matricardi, M, Clerbaux, C, Hadji-Lazaro, J, George, M, Hurtmans, D, Coheur, PF, Nedelec, P and Cammas, JP. 2012. Retrieval of MetOp-A/IASI CO profiles and validation with MOZAIC data. Atmos. Mes. Tech. 5: 2843-2857. DOI: https://doi.org/10.5194/amt-5-2843-2012
Derwent, RG, et al. 2010. Ozone in Central England: the impact of 20 years of precursor emission controls in Europe. Environ. Sci. Technol. 13: 195-204. DOI: https://doi.org/10.1016/j.envsci.2010.02.001
Derwent, RG, Manning, AJ, Simmonds, PG, Spain, TG and O'Doherty, S. 2018. Long-term trends in ozone in baseline and European regionally-polluted air at Mace Head, Ireland over a 30-year period. Atmos. Environ. 179: 279-287. DOI: https://doi.org/10.1016/j.atmosenv.2018.02.024
Ding, AJ, et al. 2008. Tropospheric ozone climatology over Beijing: analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys. 8: 1-13. DOI: https://doi.org/10.5194/acp-8-1-2008
Dobson, GMB. 1968a. The evaluation and elimination of errors in the measurement of total ozone when the sun is low, Atmospheric Physics, Clarendon Laboratory. Available at: http://www.atm.ox.ac.uk/user/barnett/Dobsonpapers/DobsonAtmosMemorandum68pt6November1968.pdf.
Dobson, GMB. 1968b. Forty Years: Research on Atmospheric Ozone at Oxford: a History. Appl. Optics 7: 387-405. DOI: https://doi.org/10.1364/AO.7.000387
Doche, C, Dufour, G, Foret, G, Eremenko, M, Cuesta, J, Beekmann, M and Kalabokas, P. 2014. Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI. Atmos. Chem. Phys. 14: 10589-10600. DOI: https://doi.org/10.5194/acp-14-10589-2014
Doherty, RM, Orbe, C, Zeng, G, Plummer, DA, Prather, MJ, Wild, O, Lin, M, Shindell, DT and Mackenzie, IA. 2017. Multi-model impacts of climate change on pollution transport from global emission source regions. Atmospheric Chemistry and Physics, 17(23): 14219. DOI: https://doi.org/10.5194/acp-17-14219-2017
Doniki, S, Hurtmans, D, Clarisse, L, Clerbaux, C, Worden, HM, Bowman, KW and Coheur, P-F. 2015. Instantaneous longwave radiative impact of ozone: an application on IASI/MetOp observations. Atmos. Chem. Phys. 15: 12971-12987. DOI: https://doi.org/10.5194/acp-15-12971-2015
Draxler, RR and Hess, GD. 1998. An overview of the HYSPLIT-4 modeling system for trajectories, dispersion and deposition. Aust. Met. Mag. 47: 295-308.
Dufour, G, Eremenko, M, Cuesta, J, Doche, C, Foret, G, Beekmann, M, Cheiney, A, Wang, Y, Cai, Z, Liu, Y, Takigawa, M, Kanaya, Y and Flaud, J-M. 2015. Springtime daily variations in lower-tropospheric ozone over east Asia: the role of cyclonic activity and pollution as observed from space with IASI. Atmos. Chem. Phys. 15: 10839-10856. DOI: https://doi.org/10.5194/acp-15-10839-2015
Dufour, G, Eremenko, M, Griesfeller, A, et al. 2012. Validation of three different scientific ozone products retrieved from IASI spectra using ozonesondes. Atmos. Mes. Tech. 5: 611-630. DOI: https://doi.org/10.5194/amt-5-611-2012
Dufour, G, Eremenko, M, Orphal, J and Flaud, J-M. 2010. IASI observations of seasonal and day-to-day variations of tropospheric ozone over three highly populated areas of China: Beijing, Shanghai, and Hong Kong. Atmos. Chem. Phys. 10: 3787-3801. DOI: https://doi.org/10.5194/acp-10-3787-2010
Duncan, BN, Lamsal, LN, Thompson, AM, Yoshida, Y, Lu, Z, Streets, DG, Hurwitz, MM and Pickering, KE. 2016. A space-based, high-resolution view of notable changes in urban NOx pollution around the world (2005-2014). J. Geophys. Res. 121: 976-96. DOI: https://doi.org/10.1002/2015JD024121
Ebojie, F. 2014. Tropospheric ozone columns retrieval from SCIAMACHY limb-nadir-matching observations (PhD dissertation), Universität Bremen: Physik/Elektrotechnik. Available at: https://elib.suub.uni-bremen.de/peid=D00104050-1.pdf (last access: 18 August 2017).
Ebojie, F, Burrows, JP, Gebhardt, C, Ladstätter-Weißenmayer, A, von Savigny, C, Rozanov, A, Weber, M and Bovensmann, H. 2016. Global trop-ospheric ozone variations from 2003 to 2011 as seen by SCIAMACHY. Atmos. Chem. Phys. 16: 417-436. DOI: https://doi.org/10.5194/acp-16-417-2016
Ebojie, F, von Savigny, C, Ladstätter-Weißenmayer, A, Rozanov, A, Weber, M, Eichmann, K-U, Bötel, S, Rahpoe, N, Bovensmann, H and Burrows, JP. 2014. Tropospheric column amount of ozone retrieved from SCIAMACHY limb-nadir-matching observations. Atmos. Meas. Tech. 7: 2073-2096. DOI: https://doi.org/10.5194/amt-7-2073-2014
Eckhardt, S, Stohl, A, Beirle, S, Spichtinger, N, James, P, Forster, C, Junker, C, Wagner, T, Platt, U and Jennings, SG. 2003. The North Atlantic Oscillation controls air pollution transport to the Arctic. Atmospheric Chemistry and Physics 3(5): 1769-1778. DOI: https://doi.org/10.5194/acp-3-1769-2003
EEA. 2016. Air quality in Europe - 2016 report, EEA Report No 28/2016, European Environment Agency (http://www.eea.europa.eu/publications/air-quality-in-europe-2016) accessed 6 June, 2017.
Eremenko, M, Dufour, G, Foret, G, Keim, C, Orphal, J, Beekmann, M, Bergametti, G and Flaud, J-M. 2008. Tropospheric ozone distributions over Europe during the heat wave in July 2007 observed from infrared nadir spectra recorded by IASI. Geophys. Res. Lett. 35(L18): 805. DOI: https://doi.org/10.1029/2008GL034803
Fioletov, VE, Tarasick, DW and Petropavlovskikh, I. 2006. Estimating ozone variability and instrument uncertainties from SBUV(/2), ozonesonde, Umkehr, and SAGE II measurements: Short-term variations. J. Geophys. Res. 111(D02): 305. DOI: https://doi.org/10.1029/2005JD006340
Fiore, AM, Naik, V and Leibensperger, EM. 2015. Air quality and climate connections. Journal of the Air & Waste Management Association 65(6): 645-685. DOI: https://doi.org/10.1080/10962247.2015.1040526
Fiore, AM, West, JJ, Horowitz, LW, Naik, V and Schwarzkopf, MD. 2008. Characterizing the trop-ospheric ozone response to methane emission controls and the benefits to climate and air quality. J. Geophys. Res. 113(D08): 307. DOI: https://doi.org/10.1029/2007JD009162
Fischer, EV, Jaffe, DA and Weatherhead, EC. 2011. Free tropospheric peroxyacetyl nitrate (PAN) and ozone at Mount Bachelor: Potential causes of variability and timescale for trend detection. Atmospheric Chemistry and Physics 11: 5641-5654. DOI: https://doi.org/10.5194/acp-11-5641-2011
Fishman, J, Fakhruzzaman, K, Cros, B and Nganda, D. 1991. Identification of widespread pollution in the southern-hemisphere deduced from satellite analyses. Science 252: 1693-1696. DOI: https://doi.org/10.1126/science.252.5013.1693
Fishman, J, Wozniak, AE and Creilson, JK. 2003. Global distribution of tropospheric ozone from satellite measurements using the empirically corrected trop-ospheric ozone residual technique: Identification of the regional aspects of air pollution. Atmos. Chem. Phys. 3: 893-907. DOI: https://doi.org/10.5194/acp-3-893-2003
Fleming, ZL, Doherty, RM, von Schneidemesser, E, Malley, CS, Cooper, OR, Pinto, JP, et al. 2018. Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. Elem Sci Anth. 6(1): 12. DOI: https://doi.org/10.1525/elementa.273
Foret, G, Hamaoui, L, Schmechtig, C, Eremenko, M, Keim, C, Dufour, G, Boynard, A, Coman, A, Ung, A and Beekmann, M. 2009. Evaluating the potential of IASI ozone observations to constrain simulated surface ozone concentrations. Atmos. Chem. Phys. 9: 8479-8491. DOI: https://doi.org/10.5194/acp-9-8479-2009
Forster, P, et al. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S, Qin, D, Manning, M, Chen, Z, Marquis, M, Averyt, KB, Tignor, M and Miller, HL (eds.), 129-234. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Forster, P and Shine, K. 1997. Radiative forcing and temperature trends from stratospheric ozone changes. J. Geophys. Res. Atmos. 102: 10841-10855. DOI: https://doi.org/10.1029/96JD03510
Galani, E, Balis, D, Zanis, P, Zerefos, C, Papayannis, A, Wernli, H and Gerasopoulos, E. 2003. Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system. J. Geophys. Res. 108: 8527. DOI: https://doi.org/10.1029/2002JD002596
Galbally, IE, Schultz, MG, Buchmann, B, Gilge, S, Guenther, F, Koide, H, Oltmans, S, Patrick, L, Scheel, H-E, Smit, H, Steinbacher, M, Steinbrecht, W, Tarasova, O, Viallon, J, Volz-Thomas, A, Weber, M, Wielgosz, R and Zellweger, C. 2013. Guidelines for Continuous Measurement of Ozone in the Troposphere, GAW Report No 209. Publication WMO-No. 1110. ISBN 978-92-63-11110-4, WMO, Geneva.
Garcia-Menendez, F, Monier, E and Selin, NE. 2017. The role of natural variability in projections of climate change impacts on U.S. ozone pollution. Geophys. Res. Lett. 44: 2911-2921. DOI: https://doi.org/10.1002/2016GL071565
Gaudel, A, Ancellet, G and Godin-Beekmann, S. 2015. Analysis of 20 years of tropospheric ozone vertical profiles by lidar and ECC at Observatoire de Haute Provence (OHP) at 44 N, 6.7 E, Atmos. Environ. 113: 78-89. DOI: https://doi.org/10.1016/j.atmosenv.2015.04.028
Gauss, M, et al. 2003. Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere. J. Geophys. Res. 108(D9): 4292. DOI: https://doi.org/10.1029/2002JD002624
Gauss, et al. 2006. Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos. Chem. Phys. 6: 575-599. DOI: https://doi.org/10.5194/acp-6-575-2006
Granados-Muñoz, MJ and Leblanc, T. 2016. Tropospheric ozone seasonal and long-term variability as seen by lidar and surface measurements at the JPL-Table Mountain Facility, California. Atmos. Chem. Phys. 16: 9299-9319. DOI: https://doi.org/10.5194/acp-16-9299-2016
Granier, C, Bessagnet, B, Bond, T, D'Angiola, A, van der Gon, HD, et al. 2011. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period. Climatic Change 109: 163-190. DOI: https://doi.org/10.1007/s10584-011-0154-1
Gratz, LE, Jaffe, DA and Hee, JR. 2014. Causes of increasing ozone and decreasing carbon monoxide in springtime at the Mt. Bachelor Observatory from 2004 to 2013. Atmospheric Environment, 109: 323-330. DOI: https://doi.org/10.1016/j.atmosenv.2014.05.076
Harris, JM and Kahl, JD. 1990. A descriptive atmospheric transport climatology for the Mauna Loa Observatory using clustered trajectories. J. Geophys. Res. 95: 13,651-13,667. DOI: https://doi.org/10.1029/JD095iD09p13651
Hering, WS. 1964. Ozonesonde Observations Over North America, Volume 1, AFCRL-64-30(I), Air Force Cambridge Research Labs, Hanscom AFB, Bedford, MA.
Hering, WS and Borden, TS. 1964. Ozonesonde Observations Over North America, Volume 2, AFCRL-64-30(II), Air Force Cambridge Research Labs, Hanscom AFB, Bedford, MA.
Hering, WS and Borden, TS. 1965. Ozonesonde Observations Over North America, Volume 3, AFCRL-64-30(III), Air Force Cambridge Research Labs, Hanscom AFB, Bedford, MA.
Hering, WS and Borden, TS. 1967. Ozonesonde Observations Over North America, Volume 4, AFCRL-64-30(IV), Air Force Cambridge Research Labs, Hanscom AFB, Bedford, MA.
Heue, K-P, et al. 2016. Trends of tropical tropospheric ozone from 20 years of European satellite measurements and perspectives for the Sentinel-5 Precursor. Atmos. Meas. Tech. 9: 5037-5051. DOI: https://doi.org/10.5194/amt-9-5037-2016
Hilton, F, August, T, Barnet, C, Bouchard, A, Camy-Peyret, C, Clarisse, L, Clerbaux, C, Coheur, P-F, Collard, A, Crevoisier, C, Dufour, G, Edwards, D, Faijan, F, Fourrié, N, Gambacorta, A, Gauguin, S, Guidard, V, Hurtmans, D, Illingworth, S, Jacquinet-Husson, N, Kerzenmacher, T, Klaes, D, Lavanant, L, Masiello, G, Matricardi, M, McNally, T, Newman, S, Pavelin, E, Péquignot, E, Phulpin, T, Remedios, J, Schlüssel, P, Serio, C, Strow, L, Taylor, J, Tobin, D, Uspensky, A and Zhou, D. 2012. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments. Bulletin of the American Meteorological Society 93(3): 347-370. DOI: https://doi.org/10.1175/BAMS-D-11-00027.1
Hoesly, RM, Smith, SJ, Feng, L, Klimont, Z, Janssens-Maenhout, G, Pitkanen, T, Seibert, JJ, Vu, L, Andres, RJ, Bolt, RM, Bond, TC, Dawidowski, L, Kholod, N, Kurokawa, J-I, Li, M, Liu, L, Lu, Z, Moura, MCP, O'Rourke, PR and Zhang, Q. 2018. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11: 369-408. DOI: https://doi.org/10.5194/gmd-11-369-2018
Huang, G, Liu, X, Chance, K, Yang, K, Bhartia, PK, Cai, Z, Allaart, M, Ancellet, G, Calpini, B, Coetzee, GJR, Cuevas-Agulló, E, Cupeiro, M, De Backer, H, Dubey, MK, Fuelberg, HE, Fujiwara, M, Godin-Beekmann, S, Hall, TJ, Johnson, B, Joseph, E, Kivi, R, Kois, B, Komala, N, König-Langlo, G, Laneve, G, Leblanc, T, Marchand, M, Minschwaner, KR, Morris, G, Newchurch, MJ, Ogino, SY, Ohkawara, N, Piters, AJM, Posny, F, Querel, R, Scheele, R, Schmidlin, FJ, Schnell, RC, Schrems, O, Selkirk, H, Shiotani, M, Skrivánková, P, Stübi, R, Taha, G, Tarasick, DW, Thompson, AM, Thouret, V, Tully, MB, Van Malderen, R, Vömel, H, von der Gathen, P, Witte, JC and Yela, M. 2017. Validation of 10-year SAO OMI Ozone Profile (PROFOZ) product using ozonesonde observations. Atmos. Meas. Tech. 10: 2455-2475. DOI: https://doi.org/10.5194/amt-10-2455-2017
Huang, M, Carmichael, GR, Chai, T, Pierce, RB, Oltmans, SJ, Jaffe, DA, Bowman, KW, Kaduwela, A, Cai, C, Spak, SN, Weinheimer, AJ, Huey, LG and Diskin, GS. 2013. Impacts of transported background pollutants on summertime western US air quality: model evaluation, sensitivity analysis and data assimilation. Atmos. Chem. Phys. 13: 359-391. DOI: https://doi.org/10.5194/acp-13-359-2013
Hubert, D, Lambert, J-C, Verhoelst, T, et al. 2016. Ground-based assessment of the bias and long-term stability of 14 limb and occultation ozone profile data records. Atmos. Meas. Tech. 9: 2497-2534. DOI: https://doi.org/10.5194/amt-9-2497-2016
Hurtmans, D, Coheur, P-F, Wespes, C, Clarisse, L, Scharf, O, Clerbaux, C, Hadji-Lazaro, J, George, M and Turquety, S. 2012. FORLI radiative transfer and retrieval code for IASI. Journal of Quantitative Spectroscopy and Radiative Transfer 113: 1391-1408. DOI: https://doi.org/10.1016/j.jqsrt.2012.02.036
IPCC. 2013. Climate Change 2013: The Physical Science Basis. In: Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1535. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Jacob, DJ, Heikes, EG, Fan, SM, Logan, JA, Mauzerall, DL, Bradshaw, JD, Singh, HB, Gregory, GL, Talbot, RW, Blake, DR and Sachse, GW. 1996. Origin of ozone and NOx in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic basin. Journal of Geophysical Research: Atmospheres 101(D19): 24235-24250. DOI: https://doi.org/10.1029/96JD00336
Jacob, DJ, Logan, JA and Murti, PP. 1999. Effect of rising Asian emissions on surface ozone in the United States. Geophys. Res. Lett. 26: 2175-2178. DOI: https://doi.org/10.1029/1999GL900450
Jacob, DJ and Winner, DA. 2009. Effect of climate change on air quality. Atmospheric Environment, 43(1): 51-63. DOI: https://doi.org/10.1016/j.atmosenv.2008.09.051
Jia, J, Ladstätter-Weißenmayer, A, Hou, X, Rozanov, A and Burrows, JP. 2017. Tropospheric ozone maxima observed over the Arabian Sea during the pre-monsoon. Atmos. Chem. Phys. 17: 4915-4930. DOI: https://doi.org/10.5194/acp-17-4915-2017
Kalabokas, P, Hjorth, J, Foret, G, Dufour, G, Eremenko, M, Siour, G, Cuesta, J and Beekmann, M. 2017. An investigation on the origin of regional springtime ozone episodes in the western Mediterranean. Atmos. Chem. Phys. 17: 3905-3928. DOI: https://doi.org/10.5194/acp-17-3905-2017
Kalabokas, PD, Cammas, J-P, Thouret, V, Volz-Thomas, A, Boulanger, D and Repapis, CC. 2013. Examination of the atmospheric conditions associated with high and low summer ozone levels in the lower troposphere over the eastern Mediterranean. Atmos. Chem. Phys. 13: 10339-10352. DOI: https://doi.org/10.5194/acp-13-10339-2013
Kalabokas, PD, Mihalopoulos, N, Ellul, R, Kleanthous, S and Repapis, CC. 2008. An investigation of the meteorological and photochemical factors influencing the background rural and marine surface ozone levels in the Central and Eastern Mediterranean. Atmos. Environ. 42: 7894-7906. DOI: https://doi.org/10.1016/j.atmosenv.2008.07.009
Kalabokas, PD and Repapis, CC. 2004. A climatological study of rural surface ozone in central Greece. Atmos. Chem. Phys. 4: 1139-1147. DOI: https://doi.org/10.5194/acp-4-1139-2004
Kalabokas, PD, Thouret, V, Cammas, J-P, Volz-Thomas, A, Boulanger, D and Repapis, CC. 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the Eastern Mediterranean (Cairo case). Tellus B, 67: 27853. DOI: https://doi.org/10.3402/tellusb.v67.27853
Kalabokas, PD, Volz-Thomas, A, Brioude, J, Thouret, V, Cammas, J-P and Repapis, CC. 2007. Vertical ozone measurements in the troposphere over the Eastern Mediterranean and comparison with Central Europe. Atmos. Chem. Phys. 7: 3783-3790. DOI: https://doi.org/10.5194/acp-7-3783-2007
Kerr, J, Mcelroy, C and Olafson, R. 1981. Measurements of ozone with the Brewer ozone spectrophotometer. In: Quadrennial International Ozone Symposium, 74-79. Boulder, Colorado.
Kiehl, JT, Schneider, TL, Portmann, RW and Solomon, S. 1999. Climate forcing due to trop-ospheric and stratospheric ozone. J. Geophys. Res. 104(D24): 31239-31254. DOI: https://doi.org/10.1029/1999JD900991
Kleanthous, S, Vrekoussis, M, Mihalopoulos, N, Kalabokas, P and Lelieveld, J. 2014. On the temporal and spatial variation of ozone in Cyprus. Sc. of the Tot. Environ. 476: 677-687.
Komhyr, WD, Connor, BJ, McDermid, IS, McGee, TJ, Parrish, AD and Margitan, JJ. 1995. Comparison of STOIC 1989 ground-based lidar, microwave spectrometer, and Dobson spectrophotometer Umkehr ozone profiles with ozone profiles from balloon-borne electrochemical concentration cell ozone-sondes. J. Geophys. Res. 100(D5): 9273-9282. DOI: https://doi.org/10.1029/94JD02173
Komhyr, WD and Sticksel, DR. 1967a. Ozonesonde Observations 1962-1966 (Volume 1), ESSA Technical Report, IER 5I-IAS I, August 1967, Boulder, CO.
Komhyr, WD and Sticksel, DR. 1967b. Ozonesonde Observations 1962-1966 (Volume 2), ESSA Technical Report, ERL 80-APCL, 3, August 1968, Boulder, CO.
Krotkov, NA, McLinden, CA, Li, C, Lamsal, LN, Celarier, EA, Marchenko, SV, Swartz, WH, Bucsela, EJ, Joiner, J, Duncan, BN, Boersma, KF, Veefkind, JP, Levelt, PF, Fioletov, VE, Dickerson, RR, He, H, Lu, Z and Streets, DG. 2016. Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015. Atmos. Chem. Phys. 16: 4605-4629. DOI: https://doi.org/10.5194/acp-16-4605-2016
Kuai, L, Bowman, KW, Worden, HM, Herman, RL and Kulawik, SS. 2017. Hydrological controls on the tropospheric ozone greenhouse gas effect. Elem Sci Anth. 5: 10. DOI: https://doi.org/10.1525/elementa.208
Lacis, AA, Wuebbles, DJ and Logan, JA. 1990. Radiative forcing of climate by changes in the vertical distribution of ozone. J. Geophys. Res. 95: 9971-9981. DOI: https://doi.org/10.1029/JD095iD07p09971
Laj, P, Klausen, J, Bilde, M, Plass-Duelmer, C, Pappalardo, G, Clerbaux, C, Baltensperger, U, Hjorth, J, Simpson, D, Reimann, S and Coheur, PF. 2009. Measuring atmospheric composition change. Atmospheric Environment 43(33): 5351-5414. DOI: https://doi.org/10.1016/j.atmosenv.2009.08.020
Lal, S, Venkataramani, S, Chandra, N, Cooper, OR, Brioude, J and Naja, M. 2014. Transport effects on the vertical distribution of tropospheric ozone over western India. J. Geophys. Res. Atmos. 119. DOI: https://doi.org/10.1002/2014JD021854
Leblanc, T, McDermid, IS and Walsh, TD. 2012. Ground-based water vapor raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring. Atmos. Meas. Tech. 5(1): 17-36. DOI: https://doi.org/10.5194/amt-5-17-2012
Leblanc, T, Sica, RJ, van Gijsel, JAE, Godin-Beekmann, S, Haefele, A, Trickl, T, Payen, G and Gabarrot, F. 2016a. Proposed standardized definitions for vertical resolution and uncertainty in the NDACC lidar ozone and temperature algorithms-Part 1: Vertical resolution. Atmos. Meas. Tech. 9: 4029-4049. DOI: https://doi.org/10.5194/amt-9-4029-2016
Lefohn, AS, et al. 2018. Tropospheric Ozone Assessment Report: Global ozone metrics for climate change, human health, and crop/ecosystem Research. Elem. Sci. Anth., 6: 28. DOI: https://doi.org/10.1525/elementa.279
Lefohn, AS, Shadwick, D and Oltmans, SJ. 2010. Characterizing changes in surface ozone levels in metropolitan and rural areas in the United States for 1980-2008 and 1994-2008. Atmos. Environ. 44: 5199-5210. DOI: https://doi.org/10.1016/j.atmosenv.2010.08.049
Leibensperger, EM, Mickley, LJ and Jacob, DJ. 2008. Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980-2006 climate change. Atmos. Chem. Phys. 8(23): 7075-86. DOI: https://doi.org/10.5194/acp-8-7075-2008
Lelieveld, J, Berresheim, H, Borrmann, S, Crutzen, PJ, Dentener, FJ, Fischer, H, Feichter, J, Flatau, PJ, Heland, J, Holzinger, R, Korrmann, R, Lawrence, MG, Levin, Z, Markowicz, KM, Mihalopoulos, N, Minikin, A, Ramanathan, V, de Reus, M, Roelofs, GJ, Scheeren, HA, Sciare, J, Schlager, H, Schultz, M, Siegmund, P, Steil, B, Stephanou, EG, Stier, P, Traub, M, Warneke, C, Williams, J and Ziereis, H. 2002. Global air pollution crossroads over the Mediterranean. Science 298: 794-799. DOI: https://doi.org/10.1126/science.1075457
Levelt, PF, van den Oord, GHJ, Dobber, MR, Malkki, A, Visser, H, de Vries, J, Stammes, P, Lundell, JOV and Saari, H. 2006. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 44: 1093-1101. DOI: https://doi.org/10.1109/TGRS.2006.872333
Leventidou, E, Eichmann, K-U, Weber, M and Burrows, JP. 2016. "Tropical tropospheric ozone columns from nadir retrievals of GOME-1/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A (1996-2012)". Atmospheric Measurement Techniques 9: 3407-3427. DOI: https://doi.org/10.5194/amt-9-3407-2016
Li, G, Bei, N, Cao, J, Wu, J, Long, X, Feng, T, Dai, W, Liu, S, Zhang, Q and Tie, X. 2017. Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: observations and source attributions. Atmos. Chem. Phys. 17: 2759-2774. DOI: https://doi.org/10.5194/acp-17-2759-2017
Li, Q, et al. 2001. A tropospheric ozone maximum over the Middle East. Geophysical Research Letters 28: 3235-3238. DOI: https://doi.org/10.1029/2001GL013134
Lin, M, et al. 2017. US surface ozone trends and extremes from 1980 to 2014: quantifying the roles of rising Asian emissions, domestic controls, wildfires, and climate. Atmos. Chem. Phys. 17: 2943-2970. DOI: https://doi.org/10.5194/acp-17-2943-2017
Lin, M, Horowitz, LW, Cooper, OR, Tarasick, D, Conley, S, Iraci, LT, Johnson, B, Leblanc, T, Petropavlovskikh, I and Yates, EL. 2015. Revisiting the evidence of increasing springtime ozone mixing ratios in the free troposphere over western North America. Geophys. Res. Lett. 42. DOI: https://doi.org/10.1002/2015GL065311
Lin, M, Horowitz, LW, Oltmans, SJ, Fiore, AM and Fan, S. 2014. Tropospheric ozone trends at Mauna Loa Observatory tied to decadal climate variability. Nature Geoscience 7: 136-143. DOI: https://doi.org/10.1038/ngeo2066
Liu, C, Liu, X and Chance, K. 2013. The impact of using different ozone cross sections on ozone profile retrievals from OMI UV measurements. J. Quant. Spectrosc. Radiat. Transfer 130: 365-372. DOI: https://doi.org/10.1016/j.jqsrt.2013.06.006
Liu, F, et al. 2016. Recent reduction in NOx emissions over China: synthesis of satellite observations and emission inventories. Environ. Res. Lett., 11, 114002. DOI: https://doi.org/10.1088/1748-9326/11/11/114002
Liu, G, Liu, J, Tarasick, DW, Fioletov, VE, Jin, JJ, Moeini, O, Liu, X, Sioris, CE and Osman, M. 2013. A global tropospheric ozone climatology from trajectorymapped ozone soundings. Atmospheric Chemistry and Physics 13: 10659-10675. DOI: https://doi.org/10.5194/acp-1310659-2013
Liu, J, et al. 2017. Causes of interannual variability over the southern hemispheric tropospheric ozone maximum. Atmos. Chem. Phys. 17: 3279-3299. DOI: https://doi.org/10.5194/acp-17-3279-2017
Liu, J, Rodriguez, JM, Thompson, AM, Logan, JA, Douglass, AR, Olsen, MA, Steenrod, SD and Posny, F. 2016. Origins of tropospheric ozone inter-annual variation over Réunion: A model investigation. J. Geophys. Res. Atmos. 121: 521-537. DOI: https://doi.org/10.1002/2015JD023981
Liu, J, Tarasick, DW, Fioletov, VE, McLinden, C, Zhao, T, Gong, S, Sioris, C, Jin, JJ, Liu, G and Moeini, O. 2013. A global ozone climatology from ozone soundings via trajectory mapping: A stratospheric perspective. Atmospheric Chemistry and Physics 13: 11441-11464. DOI: https://doi.org/10.5194/acp-13-11441-2013
Liu, JJ, Jones, DBA, Worden, JR, Noone, D, Parrington, M and Kar, J. 2009. Analysis of the summertime build-up of tropospheric ozone abundances over the Middle East and North Africa as observed by the Tropospheric Emission Spectrometer instrument. J. Geophys. Res. 114(D05): 304. DOI: https://doi.org/10.1029/2008JD010993
Liu, X, Bhartia, PK, Chance, K, Spurr, RJD and Kurosu, TP. 2010. Ozone profile retrievals from the Ozone Monitoring Instrument. Atmos. Chem. Phys. 10: 2521-2537. DOI: https://doi.org/10.5194/acp-10-2521-2010
Liu, X, Chance, K and Kurosu, TP. 2007. Improved ozone profile retrievals from GOME data with degradation correction in reflectance. Atmos. Chem. Phys. 7: 1575-1583. DOI: https://doi.org/10.5194/acp-7-1575-2007
Liu, X, Chance, K, Sioris, CE and Kurosu, TP. 2007. Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements. Atmos. Chem. Phys. 7: 3571-3578. DOI: https://doi.org/10.5194/acp-7-3571-2007
Liu, X, Chance, K, Sioris, CE, Spurr, RJD, Kurosu, TP, Martin, RV and Newchurch, MJ. 2005. Ozone profile and tropospheric ozone retrievals from the Global Ozone Monitoring Experiment: Algorithm description and validation. J. Geophys. Res. 110(D20). DOI: https://doi.org/10.1029/2005JD006240
Livesey, NJ, Read, WG, Froidevaux, L, Lambert, A, Manney, GL, Pumphrey, HC, Santee, ML, Schwartz, MJ, Wang, S, Cofeld, RE, Cuddy, DT, Fuller, RA, Jarnot, RF, Jiang, JH, Knosp, BW, Stek, PC, Wagner, PA and Wu, DL. 2011. EOS MLS Version 3.3 Level 2 data quality and description document, Tech. rep., Jet Propulsion Laboratory. Available from: http://mls.jpl.nasa.gov.
Logan, JA. 1985. Tropospheric ozone: Seasonal behavior, trends, and anthropogenic influence. J. Geophys. Res. 90(D6): 10463-10482. DOI: https://doi.org/10.1029/JD090iD06p10463
Logan, JA, et al. 2012. Changes in ozone over Europe: Analysis of ozone measurements from sondes, regular aircraft (MOZAIC) and alpine surface sites. J. Geophys. Res. 117(D09): 301. DOI: https://doi.org/10.1029/2011JD016952
Logan, JA and Kirchhoff, VWJH. 1986. Seasonal variations of tropospheric ozone at Natal, Brazil. J. Geophys. Res. 91(D7): 7875-7881. DOI: https://doi.org/10.1029/JD091iD07p07875
Lombardozzi, D, Levis, S, Bonan, G, Hess, PG and Sparks, JP. 2015. The influence of chronic ozone exposure on global carbon and water cycles. J. Clim 28: 292-305. DOI: https://doi.org/10.1175/JCLI-D-14-00223.1
LRTAP Convention. 2015. Draft Chapter III: Mapping Critical levels for Vegetation, of the Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks and Trends. Available at: http://icpmapping.org/Mapping-Manual.
Ma, Z, et al. 2016. Significant increase of surface ozone at a rural site, north of eastern China. Atmos. Chem. Phys. 16: 3969-3977. DOI: https://doi.org/10.5194/acp-16-3969-2016
Marenco, A, et al. 1998. Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview. J. Geophys. Res. 103(D19): 25631-25642. DOI: https://doi.org/10.1029/98JD00977
Mateer, CL. 1964. A study of the information content of Umkehr Observations. Ph.D. thesis, University of Michigan.
Mateer, CL and DeLuisi, JJ. 1992. A new Umkehr inversion algorithm. J. Atmos. Ter. Phys. 54: 537-556. DOI: https://doi.org/10.1016/0021-9169(92)90095-3
Matricardi, M, Chevallier, F, Kelly, G and Thepaut, JN. 2004. An improved general fast radiative transfer model for the assimilation of radiance observations. Quarterly Journal of the Royal Meteorological Society, 130: 153-173. DOI: https://doi.org/10.1256/qj.02.181
McDermid, S, Beyerle, G, Haner, D and Leblanc, T. 2002. Redesign and improved performance of the tropospheric ozone lidar at the Jet Propulsion Laboratory Table Mountain Facility. Appl. Opt. 41(36): 7550-7555. DOI: https://doi.org/10.1364/AO.41.007550
McLinden, CA, Olsen, SC, Hannegan, B, Wild, O, Prather, MJ and Sundet, J. 2000. Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux. J. Geophys. Res. 105(D11): 14653-14665. DOI: https://doi.org/10.1029/2000JD900124
McPeters, RD, Labow, GJ and Logan, JA. 2007. Ozone climatological profiles for satellite retrieval algorithms. J. Geophys. Res. 112(D05): 308. DOI: https://doi.org/10.1029/2005JD006823
Mickley, LJ, Jacob, DJ, Field, BD and Rind, D. 2004. Effects of future climate change on regional air pollution episodes in the United States. Geophys. Res. Lett. 30(L2): 4103. DOI: https://doi.org/10.1029/2004GL021216
Mickley, LJ, Jacob, DJ and Rind, D. 2001. Uncertainty in preindustrial abundance of tropospheric ozone: implications for radiative forcing calculations. J. Geophys. Res. 106(D4): 3389-3399. DOI: https://doi.org/10.1029/2000JD900594
Miles, GM, Siddans, R, Kerridge, BJ, Latter, BG and Richards, NAD. 2015. Tropospheric ozone and ozone profiles retrieved from GOME-2 and their validation. Atmospheric Measurement Techniques 8(1). DOI: https://doi.org/10.5194/amt-8-385-2015
Mills, G, et al. 2018. Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to vegetation. Elem. Sci. Anth., in-review.
Miyazaki, K, et al. 2017. Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmos. Chem. Phys. 17: 807-837. DOI: https://doi.org/10.5194/acp-17-807-2017
Monks, PS, Archibald, AT, Colette, A, Cooper, O, Coyle, M, Derwent, R, Fowler, D, Granier, C, Law, KS, Mills, GE, Stevenson, DS, Tarasova, O, Thouret, V, von Schneidemesser, E, Sommariva, R, Wild, O and Williams, ML. 2015. Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer. Atmos. Chem. Phys. 15: 8889-8973. DOI: https://doi.org/10.5194/acp-15-8889-2015
Moxim, WJ and Levy, H, II. 2000. A model analysis of the tropical South Atlantic Ocean tropospheric ozone maximum: The interaction of transport and chemistry. J. Geophys. Res. 105(D13): 17393-17415. DOI: https://doi.org/10.1029/2000JD900175
Munro, R, Siddans, R, Reburn, WJ and Kerridge, BJ. 1998. Direct measurement of tropospheric ozone distributions from space. Nature 392: 168-171. DOI: https://doi.org/10.1038/32392
Myhre, G, Shindell, D, Bréon, F-M, Collins, W, Fuglestvedt, J, Huang, J, Koch, D, Lamarque, J-F, Lee, D, Mendoza, B, Nakajima, T, Robock, A, Stephens, G, Takemura, T and Zhang, H. 2013. Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, TF, Qin, D, Plattner, G-K, Tignor, M, Allen, SK, Boschung, J, Nauels, A, Xia, Y, Bex, V and Midgley, PM (eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Naik, V, et al. 2005. Net radiative forcing due to changes in regional emissions of tropospheric ozone precursors. J. Geophys. Res. 110(D2): 4306. DOI: https://doi.org/10.1029/2005JD005908
Nair, PJ, Godin-Beekmann, S, Pazmiño, A, Hauchecorne, A, Ancellet, G, Petropavlovskikh, I, Flynn, LE and Froidevaux, L. 2011. Coherence of long-term stratospheric ozone vertical distribution time series used for the study of ozone recovery at a northern mid-latitude station. Atmos. Chem. Phys. 11: 4957-4975. DOI: https://doi.org/10.5194/acp-11-4957-2011
National Research Council. 1992. Rethinking the ozone problem in urban and regional air pollution. National Academies Press.
Nédélec, P, Blot, R, Boulanger, D, Athier, G, Cousin, J, Gautron, B, Petzold, A, Volz-Thomas, A and Thouret, V. 2015. Instrumentation on commercial aircraft for monitoring the atmospheric composition on a global scale: the IAGOS system, technical overview of ozone and carbon monoxide measurements. Tellus B 67. DOI: https://doi.org/10.3402/tellusb.v67.27791
Neu, J, et al. 2014. Tropospheric ozone variations governed by changes in stratospheric circulation. Nature Geoscience 7: 340-344. DOI: https://doi.org/10.1038/ngeo2138
Oetjen, H, Payne, VH, Kulawik, SS, Eldering, A, Worden, J, Edwards, DP, Francis, GL, Worden, HM, Clerbaux, C, Hadji-Lazaro, J and Hurtmans, D. 2014. Extending the satellite data record of tropo-spheric ozone profiles from Aura-TES to MetOp-IASI: characterisation of optimal estimation retrievals. Atmos. Meas. Tech. 7: 4223-4236. DOI: https://doi.org/10.5194/amt-7-4223-2014
Oetjen, H, Payne, VH, Neu, JL, Kulawik, SS, Edwards, DP, Eldering, A, Worden, HM and Worden, JR. 2016. A joint data record of tropospheric ozone from Aura-TES and MetOp-IASI. Atmos. Chem. Phys. 16: 10229-10239. DOI: https://doi.org/10.5194/acp-16-10229-2016
Oltmans, SJ, Karion, A, Schnell, RC, Pétron, G, Helmig, D, Montzka, SA, et al. 2016. O3, CH4, CO2, CO, NO2 and NMHC aircraft measurements in the Uinta Basin oil and gas region under low and high ozone conditions in winter 2012 and 2013. Elementa 4: 132. DOI: https://doi.org/10.12952/journal.elementa.000132
Oltmans, SJ, Lefohn, AS, Harris, JM, Galbally, I, Scheel, HE, Bodeker, G, Brunke, E, Claude, H, Tarasick, D, Johnson, BJ, Simmonds, P, Shadwick, D, Anlauf, K, Hayden, K, Schmidlin, F, Fujimoto, T, Akagi, K, Meyer, C, Nichol, S, Davies, J, Redondas, A and Cuevas, E. 2006. Long-term Changes in Tropospheric Ozone. Atmos. Environ. 40: 3156-3173. DOI: https://doi.org/10.1016/j.atmosenv.2006.01.029
Oltmans, SJ, Lefohn, AS, Shadwick, D, Harris, JM, Scheel, H-E, Galbally, I, Tarasick, DW, Johnson, BJ Brunke, EG, Claude, H, Zeng, G, Nichol, S, Schmidlin, FJ, Davies, J, Cuevas, E, Redondas, A, Naoe, H, Nakano, T and Kawasato, T. 2013. Recent Tropospheric Ozone Changes-A Pattern Dominated by Slow or No Growth. Atmospheric Environment 67: 331-351. DOI: https://doi.org/10.1016/j.atmosenv.2012.10.057
Parrish, DD, Lamarque, J-F, Naik, V, Horowitz, L, Shindell, DT, et al. 2014. Long-term changes in lower tropospheric baseline ozone concentrations: Comparing chemistry-climate models and observations at northern mid-latitudes. J. Geophys. Res. 119(9): 5719-5736. DOI: https://doi.org/10.1002/2013JD021435
Parrish, DD, Law, KS, Staehelin, J, Derwent, R, Cooper, OR, et al. 2013. Lower tropospheric ozone at northern mid-latitudes: Changing seasonal cycle. Geophys. Res. Lett 40: 1631-1636. DOI: https://doi.org/10.1002/grl.50303
Pavelin, EG, English, SJ and Eyre, JR. 2008. The assimilation of cloud-affected infrared satellite radiances for numerical weather prediction, Q. J. R. Meteorol. Soc. 134: 737-749. DOI: https://doi.org/10.1002/qj.243
Payne, VH, Neu, JL and Worden, HM. 2017. Satellite observations for understanding the drivers of variability and trends in tropospheric ozone. J. Geophys. Res.
Petetin, H, Thouret, V, Athier, G, Blot, R, Boulanger, D, Cousin, J-M, Gaudel, A, Nédélec, P and Cooper, O. 2016a. Diurnal cycle of ozone throughout the troposphere over Frankfurt as measured by MOZAIC-IAGOS commercial aircraft. Elementa: Science of the Anthropocene 4. DOI: https://doi.org/10.12952/journal.elementa.000129
Petetin, H, Thouret, V, Fontaine, A, Sauvage, B, Athier, G, Blot, R, Boulanger, D, Cousin, J-M and Nédélec, P. 2016b. Characterizing tropospheric ozone and CO around Frankfurt between 1994-2012 based on MOZAIC-IAGOS aircraft measurements. Atmos. Chem. Phys. 16: 15147-15163. DOI: https://doi.org/10.5194/acp-16-15147-2016
Petropavlovskikh, I, Bhartia, PK and DeLuisi, J. 2005. New Umkehr ozone profile retrieval algorithm optimized for climatological studies. Geophys. Res. Lett. 32(L1): 6808. DOI: https://doi.org/10.1029/2005GL023323
Petropavlovskikh, I, Evans, R, McConville, G, Oltmans, S, Quincy, D, Lantz, K, Disterhoft, P, Stanek, M and Flynn, L. 2011. Sensitivity of Dobson and Brewer Umkehr ozone profile retrievals to ozone cross-sections and stray light effects. Atmospheric Measurement Techniques 4: 1841-1853. DOI: https://doi.org/10.5194/amt-4-1841-2011
Petzold, A, Thouret, V, Gerbig, C, Zahn, A, Brenninkmeijer, C, Gallagher, M, Hermann, M, Pontaud, M, Ziereis, H, Boulanger, D, Marshall, J, Nédélec, P, Smit, H, Friess, U, Flaud, J, Wahner, A, Cammas, J and Volz-Thomas, A. 2015. Global-scale atmosphere monitoring by inservice aircraft-current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus B 67. DOI: https://doi.org/10.3402/tellusb.v%v.28452
Portmann, RW, Solomon, S, Fishman, J, Olson, JR, Kiehl, JT and Briegleb, B. 1997. Radiative forcing of the Earth's climate system due to tropical tropo-spheric ozone production. Journal of Geophysical Research: Atmospheres 102(D8): 9409-9417. DOI: https://doi.org/10.1029/96JD04007
Price, S and Pales, JC. 1963. Mauna Loa Observatory: The first five years, Monthly Weather Review, October-December. DOI: https://doi.org/10.1175/1520-0493(1963)091%3C0665:MLOTFF%3E2.3.CO;2
REVIHAAP. 2013. Review of evidence on health aspects of air pollution-REVIHAAP Project technical report. World Health Organization (WHO) Regional Office for Europe. Bonn. Available at: http://www.euro.who.int/data/assets/pdf-file/0004/193108/REVI-HAAP-Final-technical-report-final-version.pdf.
Richards, NAD, Arnold, SR, Chipperfeld, MP, Miles, G, Rap, A, Siddans, R, Monks, SA and Hollaway, MJ. 2013. The Mediterranean summertime ozone maximum: global emission sensitivities and radiative impacts. Atmos. Chem. Phys. 13: 2331-2345. DOI: https://doi.org/10.5194/acp-13-2331-2013
Rodgers, CD. 2000. Inverse methods for atmospheric sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics-Vol. 2. World Scientifc. DOI: https://doi.org/10.1142/3171
Rodriguez-Franco, JJ and Cuevas, E. 2013. Characteristics of the subtropical tropopause region based on long-term highly-resolved sonde records over Tenerife. J. Geophys. Res. Atmos. 118. DOI: https://doi.org/10.1002/jgrd.50839
Roelofs, GJ, Scheeren, HA, Heland, J, Ziereis, H and Lelieveld, J. 2003. A model study of ozone in the eastern Mediterranean free troposphere during MINOS (August 2001). Atmos. Chem. Phys. 3: 1199-1210. DOI: https://doi.org/10.5194/acp-3-1199-2003
Rozanov, VV, Diebel, D, Spurr, RJD and Burrows, JP. 1997. GOMETRAN: A radiative transfer model for the satellite project GOME-the plane-parallel version. J. Geophys. Res. 102: 16683-16695. DOI: https://doi.org/10.1029/96JD01535
Safeddine, S, et al. 2016. Tropospheric ozone variability during the East Asian summer monsoon as observed by satellite (IASI), aircraft (MOZAIC) and ground stations. Atmos. Chem. Phys. 16: 10489-10500. DOI: https://doi.org/10.5194/acp-16-10489-2016
Safeddine, S, Boynard, A, Coheur, P-F, Hurtmans, D, Pfster, G, Quennehen, B, Thomas, JL, Raut, J-C, Law, KS, Klimont, Z, Hadji-Lazaro, J, George, M and Clerbaux, C. 2014. Summertime tropospheric ozone assessment over the Mediterranean region using the thermal infrared IASI/MetOp sounder and the WRF-Chem model. Atmos. Chem. Phys. 14: 10119-10131. DOI: https://doi.org/10.5194/acp-14-10119-2014
Sánchez, ML, García, MA, Pérez, IA and de Torre, B. 2008. Evaluation of surface ozone measurements during 2000-2005 at a rural area in the upper Spanish plateau. J. Atmos. Chem. 60: 137-152. DOI: https://doi.org/10.1007/s10874-008-9113-2
Saunders, R, Matricardi, M and Brunel, P. 1999. An improved fast radiative transfer model for assimilation of satellite radiance observations. QJRMS 125: 1407-1425.
Sauvage, B, et al. 2005. Tropospheric ozone over Equatorial Africa: regional aspects from the MOZAIC data. Atmos. Chem. Phys. 5: 311-335. DOI: https://doi.org/10.5194/acp-5-311-2005
Sauvage, B, Martin, RV, van Donkelaar, A and Ziemke, JR. 2007. Quantification of the factors controlling tropical tropospheric ozone and the South Atlantic maximum. J. Geophys. Res. 112(D1): 1309. DOI: https://doi.org/10.1029/2006JD008008
Scheeren, HA, Lelieveld, J, Roelofs, GJ, Williams, J, Fischer, H, de Reus, M, de Gouw, JA, Warneke, C, Holzinger, R, Schlager, H, Klüpfel, T, Bolder, M, van der Veen, C and Lawrence, M. 2003. The impact of monsoon outflow from India and Southeast Asia in the upper troposphere over the eastern Mediterranean. Atmos. Chem. Phys. 3: 1589-1608. DOI: https://doi.org/10.5194/acp-3-1589-2003
Schenkeveld, VME, Jaross, G, Marchenko, S, Haffner, D, Kleipool, QL, Rozemeijer, NC, Veefkind, JP and Levelt, PF. 2016. In-flight performance of the Ozone Monitoring Instrument. AMT, in-review.
Schnadt Poberaj, C, Staehelin, J, Brunner, D, Thouret, V, De Backer, H, et al. 2009. Long-term changes in UT/LS ozone between the late 1970s and the 1990s deduced from the GASP and MOZAIC aircraft programs and from ozonesondes. Atmos. Chem. Phys. 9: 5343-5369. DOI: https://doi.org/10.5194/acp-9-5343-2009
Schneider, M, Blumenstock, T, Hase, F, Höpfner, M, Cuevas, E, Redondas, A and Sancho, JM. 2005. Ozone profiles and total column amounts derived at Izaña Tenerife Island, from FTIR solar absorption spectra, and its validation by an intercom-parison to ECC-sonde and Brewer spectrometer measurements. Journal of Quantitative Spectroscopy & Radiative Transfer 91: 245-274. DOI: https://doi.org/10.1016/j.jqsrt.2004.05.067
Schultz, MG, Schröder, S, Lyapina, O, Cooper, O, Galbally, I, Petropavlovskikh, I, et al. 2017. Tropo-spheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations. Elem Sci Anth. 5: 58. DOI: https://doi.org/10.1525/elementa.244
Schürmann, GJ, Algieri, A, Hedgecock, IM, Manna, G, Pirrone, N and Sprovieri, F. 2009. Modeling local and synoptic scale influences on ozone concentrations in a topographically complex region of Southern Italy. Atmos. Environ. 43: 4424-4434. DOI: https://doi.org/10.1016/j.atmosenv.2009.06.017
Schwab, JJ, Wolfe, D, Casson, P, et al. 2016. Atmospheric Science Research at Whiteface Mountain, NY: Site Description and History. Aerosol and Air Quality Research 16: 827-840. DOI: https://doi.org/10.4209/aaqr.2015.05.0343
Shen, L and Mickley, LJ. 2017. Effects of El Niño on summertime ozone air quality in the eastern United States. Geophysical Research Letters 44: 12,543-12,550. DOI: https://doi.org/10.1002/2017GL076150
Shen, L, Mickley, LJ and Gilleland, E. 2016. Impact of increasing heat waves on U.S. ozone episodes in the 2050s: Results from a multimodel analysis using extreme value theory. Geophys. Res. Lett. 43: 4017-4025. DOI: https://doi.org/10.1002/2016GL068432
Shindell, D and Faluvegi, G. 2009. Climate response to regional radiative forcing during the twentieth century. Nature Geoscience 2: 294. DOI: https://doi.org/10.1038/ngeo473
Simon, H, et al. 2015. Ozone Trends Across the United States over a Period of Decreasing NOx and VOC Emissions. Environ. Sci. Technol. 49: 186-195. DOI: https://doi.org/10.1021/es504514z
Simpson, D, Arneth, A, Mills, G, Solberg, S and Uddling, J. 2014. Ozone - the persistent menace: interactions with the N cycle and climate change. Current Opinion in Environmental Sustainability 9-10: 9-19. DOI: https://doi.org/10.1016/j.cosust.2014.07.008
Sitch, S, Cox, PM, Collins, WJ and Huntingford, C. 2007. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448: 791-794. DOI: https://doi.org/10.1038/nature06059
Škerlak, B, Sprenger, M and Wernli, H. 2014. A global climatology of stratosphere-troposphere exchange using the ERA-Interim data set from 1979 to 2011. Atmos. Chem. Phys. 14: 913-937. DOI: https://doi.org/10.5194/acp-14-913-2014
Sofen, ED, Bowdalo, D and Evans, MJ. 2016. How to most effectively expand the global surface ozone observing network. Atmospheric Chemistry and Physics, 16(3): 1445-1457. DOI: https://doi.org/10.5194/acp-16-1445-2016
Steinbrecht, W, et al. 2017. An update on ozone profile trends for the period 2000 to 2016. Atmos. Chem. Phys. 17: 10675-10690. DOI: https://doi.org/10.5194/acp-17-10675-2017
Stevenson, D, et al. 2013. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP). Atmos. Chem. Phys. 13: 3063-3085. DOI: https://doi.org/10.5194/acp-13-3063-2013
Stevenson, DS, Dentener, FJ, Schultz, MG, Ellingsen, K, Van Noije, TPC, Wild, O, Zeng, G, Amann, M, Atherton, CS, Bell, N, Bergmann, DJ, Bey, I, Butler, T, Cofala, J, Collins, WJ, Derwent, RG, Doherty, RM, Drevet, J, Eskes, HJ, Fiore, AM, Gauss, M, Hauglustaine, DA, Horowitz, LW, Isaksen, ISA, Krol, MC, Lamarque, J-F, Lawrence, MG, Montanaro, V, Müller, J-F, Pitari, G, Prather, MJ, Pyle, JA, Rast, S, Rodgriguez, JM, Sanderson, MG, Savage, NH, Shindell, DT, Strahan, SE, Sudo, K and Szopa, S. 2006. Multimodel ensemble simulations of present-day and near-future tropospheric ozone. J. Geophys. Res. 111(D8). DOI: https://doi.org/10.1029/2005JD006338
Stohl, A, et al. 2003. Stratosphere-troposphere exchange: A review, and what we have learned from STACCATO. J. Geophys. Res. 108(D12): 8516. DOI: https://doi.org/10.1029/2002JD002490
Strode, SA, Douglass, AR, Ziemke, JR, Manyin, M, Nielsen, JE and Oman, LD. 2017. A model and satellite-based analysis of the tropospheric ozone distribution in clear versus convectively cloudy conditions. Journal of Geophysical Research: Atmospheres 122: 11,948-11,960. DOI: https://doi.org/10.1002/2017JD027015
Sun, L, Xue, L, et al. 2016. Significant increase of summertime ozone at Mount Tai in Central Eastern China. Atmos. Chem. Phys. 16: 10637-10650. DOI: https://doi.org/10.5194/acp-16-10637-2016
Swap, RJ, Annegarn, HJ, Suttles, JT, King, MD, Platnick, S, Privette, JL and Scholes, RJ. 2003. Africa burning: A thematic analysis of the Southern African Regional Science Initiative (SAFARI 2000). J. Geophys. Res. 108: 8465. DOI: https://doi.org/10.1029/2003JD003747
Tanimoto, H, et al. 2015. Consistency of tropospheric ozone observations made by different platforms and techniques In: The global databases. Tellus, B, 67: 27073. DOI: https://doi.org/10.3402/tellusb.v67.27073
Tarasick, DW, et al. 2010. High-resolution tropospheric ozone fields for INTEX and ARCTAS from IONS ozonesondes. J. Geophys. Res. 115(D20): 301. DOI: https://doi.org/10.1029/2009JD012918
Tarasick, DW, Davies, J, Smit, HGJ and Oltmans, SJ. 2016. A re-evaluated Canadian ozonesonde record: measurements of the vertical distribution of ozone over Canada from 1966 to 2013. Atmos. Meas. Tech. 9: 195-214. DOI: https://doi.org/10.5194/amt-9-195-2016
Tarasick, D, Galbally, I, Cooper, OR, Ancellet, G, Leblanc, T, Wallington, TJ, Ziemke, J, Liu, X, Steinbacher, M, Stähelin, J, Vigouroux, C, Hannigan, J, García, O, Foret, G, Zanis, P, Weatherhead, E, Petropavlovskikh, I, Worden, H, Osman, M, Liu, J, Lin, M, Schultz, M, Granados-Muñoz, M, Thompson, AM, Oltmans, SJ, Cuesta, J, Dufour, G, Thouret, V, Hassler, B and Trickl, T. 2018. Tropospheric Ozone Assessment Report: Tropospheric ozone observations-How well do we know tropospheric ozone changes? Elem. Sci. Anth. in-review.
Team, NS. 2000. An Assessment of Tropospheric Ozone Pollution - a North American Perspective. NARSTO. http://www.narsto.org/ozone-assessment.
The Royal Society. 2008. Ground-level Ozone in the 21st century: Future Trends, Impacts and Policy Implications. Royal Society policy document 15/08, RS1276, (http://royalsociety.org/Report-WF.aspx?pageid57924&terms5ground-level1ozone).
Thompson, AM, et al. 2000. A tropical Atlantic Paradox: Shipboard and satellite views of a tropospheric ozone maximum and wave-one in January-February 1999. J. Geophys. Res. DOI: https://doi.org/10.1029/1999GL011273
Thompson, AM, Balashov, NV, Witte, JC, Coetzee, GJR, Thouret, V and Posny, F. 2014. Tropospheric ozone increases in the southern African region: Bellwether for rapid growth in southern hemisphere pollution? Atmos. Chem. Phys. 14: 9855-9869. DOI: https://doi.org/10.5194/acp-14-9855-2014
Thompson, AM, Miller, SK, Tilmes, S, Kollonige, DW, Witte, JC, Oltmans, SJ, Johnson, BJ, Fujiwara, M, Schmidlin, FJ, Coetzee, GJR, Komala, N, Maata, M, bt Mohamad, M, Nguyo, J, Mutai, C, Ogino, S-Y, Raimundo, F, Da Silva, NM, Paes Leme, F, Posny, R, Scheele, HB, Selkirk, M, Shiotani, R, Stübi, G, Levrat, B, Calpini, V, Thouret, H, Tsuruta, J, Valverde Canossa, H, Vömel, S, Yonemura, J, Andrés Diaz, N, Tan Thanh, T, and Thuy Ha HT. 2012. Southern Hemisphere Additional Ozone-sondes (SHADOZ) ozone climatology (2005-2009): Tropospheric and tropical tropopause layer (TTL) profiles with comparisons to OMI based ozone products. J. Geophys. Res. 117(D2): 3301. DOI: https://doi.org/10.1029/2010JD016911
Thompson, AM, Witte, JC, Smit, HGJ, Oltmans, SJ, Johnson, BJ, Kirchhoff, VWJH and Schmidlin, FJ. 2007. Southern Hemisphere Additional Ozone-sondes (SHADOZ) 1998-2004 tropical ozone climatology: 3. Instrumentation, station-to-station variability, and evaluation with simulated flight profiles. J. Geophys. Res. 112(D03): 304. DOI: https://doi.org/10.1029/2005JD007042
Thompson, AM, Witte, JC, Sterling, C, Jordan, A, Johnson, BJ, Oltmans, SJ, Fujiwara, M, Vömel, H, Allaart, M, Piters, A, Coetzee, GJR, Posny, F, Corrales, E, Andres, J, Diaz, C, Félix, N, Komala, N, Lai, M, Maata, F, Mani, Z, Zainal, S-Y, Ogino, F, Paredes, T, Luiz Bezerra Penha, F, Raimundo da Silva, S, Sallons-Mitro, HB, Selkirk, F, Schmidlin, J, Stuebi, R and Thiongo, K. 2017. First reprocessing of Southern Hemisphere Additional Ozone-sondes (SHADOZ) Ozone Profiles (1998-2016). 2. Comparisons with satellites and ground-based instruments. J. Geophys. Res., in press. DOI: https://doi.org/10.1002/2017JD027406
Thouret, V, Cammas, J-P, Sauvage, B, Athier, G, Zbinden, R, Nédélec, P, Simon, P and Karcher, F. 2006. Tropopause referenced ozone climatology and inter-annual variability (1994-2003) from the MOZAIC programme. Atmos. Chem. Phys. 6: 1033-1051. DOI: https://doi.org/10.5194/acp-6-1033-2006
Thouret, V, Marenco, A, Logan, JA, Nédélec, P and Grouhel, C. 1998. Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations. J. Geophys. Res. 103(D19): 25695-25720. DOI: https://doi.org/10.1029/98JD02243
Tombrou, M, Bossioli, E, Kalogiros, J, Allan, JD, Bacak, A, Biskos, G, Coe, H, Dandou, A, Kouvarakis, G, Mihalopoulos, N, Percival, CJ, Protonotariou, AP and Szabó-Takács, B. 2015. Physical and chemical processes of air masses in the Aegean Sea during Etesians: Aegean-GAME airborne campaign. Sci. Total Environ 506-507, 201-216. DOI: https://doi.org/10.1016/j.scitotenv.2014.10.098
Trickl, T, Feldmann, H, Kanter, H-J, Scheel, HE, Sprenger, M, Stohl, A and Wernli, H. 2010. Forecasted deep stratospheric intrusions over Central Europe: case studies and climatological aspects. Atmos. Chem. Phys. 10: 499-524. DOI: https://doi.org/10.5194/acp-10-499-2010
Trickl, T, Vogelmann, H, Giehl, H, Scheel, H-E, Sprenger, M and Stohl, A. 2014. How stratospheric are deep stratospheric intrusions? Atmos. Chem. Phys. 14: 9941-9961. DOI: https://doi.org/10.5194/acp-14-9941-2014
Tyrlis, E, Škerlak, B, Sprenger, M, Wernli, H, Zittis, G and Lelieveld, J. 2014. On the linkage between the Asian summer monsoon and tropopause fold activity over the eastern Mediterranean and the Middle East. J. Geophys. Res. Atmos. 119. DOI: https://doi.org/10.1002/2013JD021113
U.S. Environmental Protection Agency. 2013. Integrated Science Assessment for Ozone and Related Photochemical Oxidants. EPA/600/R-10/076F. Office of Research and Development, Research Triangle Park, NC (February).
van der A, RJ, et al. 2017. Cleaning up the air: effectiveness of air quality policy for SO2 and NOx emissions in China. Atmos. Chem. Phys. 17: 1775-1789. DOI: https://doi.org/10.5194/acp-17-1775-2017
van der Werf, GR, Randerson, JT, Giglio, L, Collatz, GJ, Mu, M, et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Phys. 10: 11,707-11,735. DOI: https://doi.org/10.5194/acp-10-11707-2010
Velchev, K, Cavalli, F, Hjorth, J, Marmer, E, Vignati, E, Dentener, F and Raes, F. 2011. Ozone over the Western Mediterranean Sea - results from two years of shipborne measurements. Atmos. Chem. Phys. 11: 675-688. DOI: https://doi.org/10.5194/acp-11-675-2011
Verstraeten, WW, Neu, JL, Williams, JE, Bowman, KW, Worden, JR and Boersma, KF. 2015. Rapid increases in tropospheric ozone production and export from China. Nat. Geosci. 8: 690-695. DOI: https://doi.org/10.1038/ngeo2493
Vigouroux, C, Blumenstock, T, Coffey, M, Errera, Q, García, O, Jones, NB, Hannigan, JW, Hase, F, Liley, B, Mahieu, E, Mellqvist, J, Notholt, J, Palm, M, Persson, G, Schneider, M, Servais, C, Smale, D, Thölix, L and De Mazière, M. 2015. Trends of ozone total columns and vertical distribution from FTIR observations at eight NDACC stations around the globe. Atmos. Chem. Phys. 15: 2915-2933. DOI: https://doi.org/10.5194/acp-15-2915-2015
Vigouroux, C, De Mazière, M, Demoulin, P, Servais, C, Hase, F, Blumenstock, T, Kramer, I, Schneider, M, Mellqvist, J, Strandberg, A, Velazco, V, Notholt, J, Sussmann, R, Stremme, W, Rockmann, A, Gardiner, T, Coleman, M and Woods, P. 2008. Evaluation of tropospheric and stratospheric ozone trends over Western Europe from ground-based FTIR network observations. Atmos. Chem. Phys. 8: 6865-6886. DOI: https://doi.org/10.5194/acp-8-6865-2008
Wang, T, et al. 2017. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Science of the Total Environment 575: 1582-1596. DOI: https://doi.org/10.1016/j.scitotenv.2016.10.081
Wasserstein, RL and Lazar, NA. 2016. The ASA's Statement on p-Values: Context, Process, and Purpose. The American Statistician 70: 129-133. DOI: https://doi.org/10.1080/00031305.2016.1154108
Wellemeyer, CG, Taylor, SL, Seftor, CJ, McPeters, RD and Bhatia, PK. 1997. A correction for the Total Ozone Mapping Spectrometer profile shape errors at high latitude. J. Geophys. Res. 102: 9029-9038. DOI: https://doi.org/10.1029/96JD03965
Wespes, C, Emmons, L, Edwards, DP, Hannigan, J, Hurtmans, D, Saunois, M, Coheur, P-F, Clerbaux, C, Coffey, MT, Batchelor, RL, Lindenmaier, R, Strong, K, Weinheimer, AJ, Nowak, JB, Ryerson, TB, Crounse, JD and Wennberg, PO. 2012. Analysis of ozone and nitric acid in spring and summer arctic pollution using aircraft, ground-based, satellite observations and mozart-4 model: source attribution and partitioning. Atmos. Chem. Phys. 12: 237-259. DOI: https://doi.org/10.5194/acp-12-237-2012
Wespes, C, Hurtmans, D, Clerbaux, C, Boynard, A and Coheur, P-F. 2018. Decrease in tropospheric O3 levels of the Northern Hemisphere 1 observed by IASI. Atmos. Chem. Phys. Discuss. DOI: https://doi.org/10.5194/acp-2017-904
Wespes, C, Hurtmans, D, Clerbaux, C and Coheur, P-F. 2017. O3 variability in the troposphere as observed by IASI over 2008-2016: Contribution of atmospheric chemistry and dynamics. J. Geophys. Res. Atmos. 122. DOI: https://doi.org/10.1002/2016JD025875
West, JJ, Fiore, AM, Naik, V, Horowitz, LW, Schwarzkopf, MD and Mauzerall, DL. 2007. Ozone air quality and radiative forcing consequences of changes in ozone precursor emissions. Geophys. Res. Lett. 34(L06): 806. DOI: https://doi.org/10.1029/2006GL029173
Wilcox, LJ, Hoskins, BJ and Shine, KP. 2012. A global blended tropopause based on ERA data. Part I: Climatology. Q. J. R. Meteorol. Soc. 138(L06): 806. DOI: https://doi.org/10.1002/qj.951
Wirth, V. 2000. Thermal versus dynamical tropopause in upper-tropospheric balanced flow anomalies. Q.J.R. Meteorol. Soc. 126: 299-317. DOI: https://doi.org/10.1002/qj.49712656215
Witte, JC, Thompson, AM, Smit, HG, Fujiwara, M, Posny, F, Coetzee, GJ, Northam, ET, Johnson, BJ, Sterling, CW, Mohamad, M and Ogino, SY. 2017. First reprocessing of Southern Hemisphere ADditional OZonesondes (SHADOZ) profile records (1998-2015) 1: Methodology and evaluation. Journal of Geophysical Research: Atmospheres 122: 6611-6636. DOI: https://doi.org/10.1002/2016JD026403
Worden, J, et al. 2009. Observed vertical distribution of tropospheric ozone during the Asian summertime monsoon. J. Geophys. Res. 114(D13): 304. DOI: https://doi.org/10.1029/2008JD010560
Worden, H, Bowman, KW, Kulawik, S and Aghedo, A. 2011. Sensitivity of outgoing longwave radiative flux to the global vertical distribution of ozone characterized by instantaneous radiative kernels from Aura-TES. J. Geophys. Res. 116(D14): 115. DOI: https://doi.org/10.1029/2010JD015101
Worden, HM, Bowman, KW, Worden, JR, Eldering, A and Beer, R. 2008. Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone. Nat. Geosci. 1: 305-308. DOI: https://doi.org/10.1038/ngeo182
WMO. 1957. Meteorology-A three-dimensional science: Second session of the commission for aerology. WMO bull. IV4, 134-138.
WMO. 2010. Douglass, A and Fioletov, V (Coordinating Lead Authors), Godin-Beekmann, S, Müller, R, Stolarski, R, Webb, A, Arola, A, Burkholder, J, Burrows, J, Chipperfeld, M, Valverde Canossa, J, Cordero, R, David, C, den Outer, P, Diaz, S, Flynn, L, Hegglin, M, Herman, J, Huck, P, Janjai, S, Janosi, I, Krzyscin, J, Liu, Y, Logan, J, McKenzie, R, Matthes, K, Muthama, NJ, Petropavlovskikh, I, Pitts, M, Rex, SRM, Salawitch, R, Sinnhuber, B-M, Staehelin, J, Strahan, S, Tourpali, K and Vigouroux, C. 2011. Stratospheric Ozone and Surface Ultraviolet Radiation, Chapter 2 in Scientific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project-Report No. 52: 516. World Meteorological Organization, Geneva, Switzerland.
WMO. 2014. Pawson, S and Steinbrecht, W (Lead authors), Charlton-Perez, AJ, Fujiwara, M, Karpechko, AY, Petropavlovskikh, I, Urban, J and Weber, M. 2014. Update on Global Ozone: Past, Present, and Future, Chapter 2 in Scientific Assessment of Ozone Depletion: 2014. Global Ozone Research and Monitoring Project Report No. 55, 416, World Meteorological Organization, Geneva, Switzerland.
Wu, S, Mickley, LJ, Jacob, DJ, Logan, JA, Yantosca, RM, et al. 2007. Why are there large differences between models in global budgets of tropospheric ozone? J. Geophys. Res. 112(D05): 302. DOI: https://doi.org/10.1029/2006JD007801
Xu, W, Lin, W, Xu, X, Tang, J, Huang, J, Wu, H and Zhang, X. 2016. Long-term trends of surface ozone and its influencing factors at the Mt Waliguan GAW station, China-Part 1: Overall trends and characteristics. Atmos. Chem. Phys. 16: 6191-6205. DOI: https://doi.org/10.5194/acp-16-6191-2016
Xue, L, et al. 2014. Increasing External Effects Negate Local Efforts to Control Ozone Air Pollution: A Case Study of Hong Kong and Implications for Other Chinese Cities. Environ. Sci. Technol. 48. DOI: https://doi.org/10.1021/es503278g
Yamasoe, M, Sauvage, B, Thouret, V, Nédélec, P, LeFlochmoen, E and co-authors. 2015. Analysis of tropospheric ozone and carbon monoxide profiles over South America based on MOZAIC/IAGOS database and model simulations. Tellus B, 67: 27884. DOI: https://doi.org/10.3402/tellusb.v67.27884
Young, PJ, et al. 2013. Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP). Atmos. Chem. Phys. 13: 2063-2090. DOI: https://doi.org/10.5194/acp-13-2063-2013
Young, PJ, Naik, V, et al. 2018. Young, PJ, Naik, V, Fiore, AM, Gaudel, A, Guo, J, Lin, MY, et al. 2018. Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends. Elem Sci Anth. 6(1): 10. DOI: https://doi.org/10.1525/elementa.265
Zanis, P, Hadjinicolaou, P, Pozzer, A, Tyrlis, E, Dafka, S, Mihalopoulos, N and Lelieveld, J. 2014. Summertime free-tropospheric ozone pool over the eastern Mediterranean/Middle East. Atmos. Chem. Phys. 14: 115-132. DOI: https://doi.org/10.5194/acp-14-115-2014
Zbinden, RM, Thouret, V, Ricaud, P, Carminati, F, Cammas, J-P and Nédélec, P. 2013. Climatology of pure tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC in the mid-northern latitudes (24°N to 50°N) from 1994 to 2009. Atmos. Chem. Phys. 13(24): 12363-12388. DOI: https://doi.org/10.5194/acp-13-12363-2013
Zeng, G, Morgenstern, O, Shiona, H, Thomas, AJ, Querel, RR and Nichol, SE. 2017. Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry-climate model simulations. Atmos. Chem. Phys. Discuss. DOI: https://doi.org/10.5194/acp-2017-386
Zerefos, CS, Kourtidis, KA, Melas, D, Balis, D, Zanis, P, Katsaros, L, Mantis, HT, Repapis, C, Isaksen, I, Sundet, J, Herman, J, Bhartia, PK and Calpini, B. 2002. Photo-chemical Activity and Solar Ultraviolet Radiation (PAUR) Modulation factors: An overview of the project. J. Geophys. Res. 107(D18): 8134. DOI: https://doi.org/10.1029/2000JD00134
Zhang, Y, Cooper, OR, Gaudel, A, Thompson, AM, Nédélec, P, Ogino, S-Y and West, JJ. 2016. Tropo-spheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions. Nature Geoscience. DOI: https://doi.org/10.1038/ngeo2827
Zhao, B, Wang, SX, Liu, H, Xu, JY, Fu, K, Klimont, Z, Hao, JM, He, KB, Cofala, J and Amann, M. 2013. NOx emissions in China: historical trends and future perspectives. Atmos. Chem. Phys. 13: 9869-9897. DOI: https://doi.org/10.5194/acp-13-9869-2013
Ziemke, JR, Chandra, S, Duncan, BN, Froidevaux, L, Bhartia, PK, Levelt, PF and Waters, JW. 2006. Tropospheric ozone determined from Aura OMI and MLS: Evaluation of measurements and comparison with the Global Modeling Initiative's Chemical Transport Model. J. Geophys. Res. 111(D19): 303. DOI: https://doi.org/10.1029/2006JD007089
Ziemke, JR, Chandra, S, Oman, LD and Bhartia, PK. 2010. A new ENSO index derived from satellite measurements of column ozone. Atmos. Chem. Phys. 10: 3711-3721. DOI: https://doi.org/10.5194/acp-10-3711-2010
Ziemke, JR and Cooper, OR. 2017. [Global Climate] Trop-ospheric Ozone [in "State of the Climate in 2016"]. Bull. Amer. Meteor. Soc., in review.
Ziemke, JR, Douglass, AR, Oman, LD, Strahan, SE and Duncan, BN. 2015. Tropospheric ozone variability in the tropical Pacific from ENSO to MJO and shorter timescales. Atmos. Chem. Phys. 15: 8037-8049. DOI: https://doi.org/10.5194/acp-15-8037-2015