NOTICE: this is the author’s version of a work that was accepted for publication in Computer Methods in Applied Mechanics and Engineering. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Computer Methods in Applied Mechanics and Engineering 348 (2019) 97–138, DOI: 10.1016/j.cma.2019.01.016
All documents in ORBi are protected by a user license.
[en] An inverse Mean-Field Homogenization (MFH) process is developed to improve the computational efficiency of non-linear stochastic multiscale analyzes by relying on a micro-mechanics model. First full-field simulations of composite Stochastic Volume Element (SVE) realizations are performed
to characterize the homogenized stochastic behavior. The uncertainties observed in the non-linear homogenized response, which result from the uncertainties of their micro-structures, are then translated to an incrementalsecant MFH formulation by defining the MFH input parameters as random effective properties. These effective input parameters, which correspond to the micro-structure geometrical information and to the material phases model parameters, are identified by conducting an inverse analysis from the full-field homogenized responses. Compared to the direct finite element analyzes on SVEs, the resulting stochastic MFH process reduces not only the computational cost, but also the order of uncertain parameters in the composite micro-structures, leading to a stochastic Mean-Field Reduced Order Model (MF-ROM). A data-driven stochastic model is then built in order to generate the random effective properties under the form of a random field used as entry for the stochastic MF-ROM embedded in a Stochastic Finite Element Method (SFEM). The two cases of elastic Unidirectional (UD) fibers embedded in an elasto-plastic matrix and of elastic UD fibers embedded in a damage-enhanced elasto-plastic matrix are successively considered. In order to illustrate the capabilities of the method, the stochastic response of a ply is studied under transverse loading condition.
H2020 - 685451 - M-ERA.NET 2 - ERA-NET for materials research and innovation
Name of the research project :
The research has been funded by the Walloon Region under the agreement no 1410246 - STOMMMAC (CT-INT2013-03-28) in the context of the M-ERA.NET Joint Call 2014.
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 CE - Commission Européenne
Graham-Brady, L., Arwade, S., Corr, D., Gutierreź M., Breysse, D., Grigoriu, M., Zabaras, N., Probability and materials: from nano- to macro-scale: A summary. Probab. Eng. Mech. 0266-8920, 21(3), 2006, 193–199, 10.1016/j.probengmech.2005.10.005 probability and Materials: from Nano- to Macro-Scale.
McDowell, D.L., A perspective on trends in multiscale plasticity. Int. J. Plast. 0749-6419, 26(9), 2010, 1280–1309, 10.1016/j.ijplas.2010.02.008 special Issue In Honor of David L. McDowell.
Ghanem, R., Spanos, P., Stochastic Finite Elements: A Spectral Approach. 1991, Springer Verlag.
Stefanou, G., The stochastic finite element method: Past, present and future. Comput. Methods Appl. Mech. Engrg. 0045-7825, 198(9–12), 2009, 1031–1051, 10.1016/j.cma.2008.11.007.
Charmpis, D., Schu ller, G., Pellissetti, M., The need for linking micromechanics of materials with stochastic finite elements: A challenge for materials science. Comput. Mater. Sci. 0927-0256, 41(1), 2007, 27–37, 10.1016/j.commatsci.2007.02.014.
Alzebdeh, K., Ostoja-Starzewski, M., Micromechanically based stochastic finite elements: length scales and anisotropy. Probab. Eng. Mech. 0266-8920, 11(4), 1996, 205–214, 10.1016/0266-8920(96)00015-X third International Stochastic Structural Dynamics Conference.
Ostoja-Starzewski, M., Wang, X., Stochastic finite elements as a bridge between random material microstructure and global response. Comput. Methods Appl. Mech. Engrg. 0045-7825, 168(1–4), 1999, 35–49, 10.1016/S0045-7825(98)00105-4.
Blacklock, M., Bale, H., Begley, M., Cox, B., Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary model. J. Mech. Phys. Solids 0022-5096, 60(3), 2012, 451–470, 10.1016/j.jmps.2011.11.010.
Tal, D., Fish, J., Generating a statistically equivalent representative volume element with discrete defects. Compos. Struct. 0263-8223, 153, 2016, 791–803, 10.1016/j.compstruct.2016.06.077.
Vanaerschot, A., Cox, B.N., Lomov, S.V., Vandepitte, D., Stochastic multi-scale modelling of textile composites based on internal geometry variability. Comput. Struct. 0045-7949, 122, 2013, 55–64, 10.1016/j.compstruc.2012.10.026 computational Fluid and Solid Mechanics 2013.
Gupta, A., Cecen, A., Goyal, S., Singh, A.K., Kalidinhi, S.R., Structure-property linkages using a data science approach: Application to a non-metallic inclusion/steel composite system. Acta Mater. 1359-6454, 91, 2015, 239–254, 10.1016/j.actamat.2015.02.045.
Vaughan, T., McCarthy, C., A combined experimental-numerical approach for generating statistically equivalent fibre distributions for high strength laminated composite materials. Compos. Sci. Technol. 0266-3538, 70(2), 2010, 291–297, 10.1016/j.compscitech.2009.10.020.
Melro, A., Camanho, P., Pinho, S., Generation of random distribution of fibres in long-fibre reinforced composites. Compos. Sci. Technol. 0266-3538, 68(9), 2008, 2092–2102, 10.1016/j.compscitech.2008.03.013.
Wu, L., Chung, C.N., Major, Z., Adam, L., Noels, L., From SEM images to elastic responses: A stochastic multiscale analysis of UD fiber reinforced composites. Compos. Struct. 0263-8223, 189, 2018, 206–227, 10.1016/j.compstruct.2018.01.051.
Kanouté P., Boso, D., Chaboche, J., Schrefler, B., Multiscale methods for composites: A review. Arch. Comput. Methods Eng. 1134-3060, 16, 2009, 31–75, 10.1007/s11831-008-9028-8.
Noels, L., Wu, L., Adam, L., Seyfarth, J., Soni, G., Segurado, J., Laschet, G., Chen, G., Lesueur, M., Lobos, M., Böhlke, T., Reiter, T., Oberpeilsteiner, S., Salaberger, D., Weichert, D., Broeckmann, C., Effective properties. Handbook of Software Solutions for ICME, 2016, Wiley-VCH Verlag GmbH & Co. KGaA 9783527693566, 433–485, 10.1002/9783527693566.ch6.
Matous, K., Geers, M.G., Kouznetsova, V.G., Gillman, A., A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials. J. Comput. Phys. 0021-9991, 330(Supplement C), 2017, 192–220, 10.1016/j.jcp.2016.10.070.
Michel, J., Moulinec, H., Suquet, P., Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods Appl. Mech. Engrg. 0045-7825, 172(1), 1999, 109–143, 10.1016/S0045-7825(98)00227-8.
Terada, K., Hori, M., Kyoya, T., Kikuchi, N., Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct. 0020-7683, 37(16), 2000, 2285–2311, 10.1016/S0020-7683(98)00341-2.
Kouznetsova, V., Brekelmans, W.A.M., Baaijens, F.P.T., An approach to micro-macro modeling of heterogeneous materials. Comput. Mech. 1432-0924, 27(1), 2001, 37–48, 10.1007/s004660000212.
Miehe, C., Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Internat. J. Numer. Methods Engrg. 1097-0207, 55(11), 2002, 1285–1322, 10.1002/nme.515.
Ostoja-Starzewski, M., Du, X., Khisaeva, Z.F., Li, W., Comparisons of the size of the representative volume element in elastic, plastic, thermoelastic, and permeable random microstructures. Int. J. Multiscale Comput. Eng. 1543-1649, 5(2), 2007, 73–82.
Salmi, M., Auslender, F., Bornert, M., Fogli, M., Apparent and effective mechanical properties of linear matrix-inclusion random composites: Improved bounds for the effective behavior. Int. J. Solids Struct. 0020-7683, 49(10), 2012, 1195–1211, 10.1016/j.ijsolstr.2012.01.018.
Trovalusci, P., Ostoja-Starzewski, M., De Bellis, M.L., Murrali, A., Scale-dependent homogenization of random composites as micropolar continua. Eur. J. Mech. A 0997-7538, 49, 2015, 396–407, 10.1016/j.euromechsol.2014.08.010.
Reccia, E., De Bellis, M.L., Trovalusci, P., Masiani, R., Sensitivity to material contrast in homogenization of random particle composites as micropolar continua. Composites B 1359-8368, 136, 2018, 39–45, 10.1016/j.compositesb.2017.10.017.
Ostoja-Starzewski, M., Scale effects in plasticity of random media: status and challenges. Int. J. Plast. 0749-6419, 21(6), 2005, 1119–1160, 10.1016/j.ijplas.2004.06.008 plasticity of Multiphase Materials.
Hachemi, A., Chen, M., Chen, G., Weichert, D., Limit state of structures made of heterogeneous materials. Int. J. Plast. 0749-6419, 63, 2014, 124–137, 10.1016/j.ijplas.2014.03.019 deformation Tensors in Material Modeling in Honor of Prof. Otto T. Bruhns.
Savvas, D., Stefanou, G., Papadrakakis, M., Determination of RVE size for random composites with local volume fraction variation. Comput. Methods Appl. Mech. Engrg. 0045-7825, 305, 2016, 340–358, 10.1016/j.cma.2016.03.002.
Stefanou, G., Savvas, D., Papadrakakis, M., Stochastic finite element analysis of composite structures based on mesoscale random fields of material properties. Comput. Methods Appl. Mech. Engrg. 0045-7825, 326, 2017, 319–337, 10.1016/j.cma.2017.08.002.
Wu, L., Lucas, V., Nguyen, V.-D., Golinval, J.-C., Paquay, S., Noels, L., A stochastic multi-scale approach for the modeling of thermo-elastic damping in micro-resonators. Comput. Methods Appl. Mech. Engrg. 0045-7825, 310, 2016, 802–839, 10.1016/j.cma.2016.07.042.
Pivovarov, D., Steinmann, P., Modified SFEM for computational homogenization of heterogeneous materials with microstructural geometric uncertainties. Comput. Mech. 57:1 (2016), 123–147.
Yvonnet, J., He, Q.-C., The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains. J. Comput. Phys. 0021-9991, 223(1), 2007, 341–368, 10.1016/j.jcp.2006.09.019.
Radermacher, A., Bednarcyk, B.A., Stier, B., Simon, J., Zhou, L., Reese, S., Displacement-based multiscale modeling of fiber-reinforced composites by means of proper orthogonal decomposition. Adv. Model. Simul. Eng. Sci. 2213-7467, 3(1), 2016, 29, 10.1186/s40323-016-0082-8.
Hernández, J., Oliver, J., Huespe, A., Caicedo, M., Cante, J., High-performance model reduction techniques in computational multiscale homogenization. Comput. Methods Appl. Mech. Engrg. 0045-7825, 276, 2014, 149–189, 10.1016/j.cma.2014.03.011.
Soldner, D., Brands, B., Zabihyan, R., Steinmann, P., Mergheim, J., A numerical study of different projection-based model reduction techniques applied to computational homogenisation. Comput. Mech. 1432-0924, 60(4), 2017, 613–625, 10.1007/s00466-017-1428-x.
Michel, J.-C., Suquet, P., Nonuniform transformation field analysis: a reduced model for multiscale nonlinear problems in solid mechanics. Galvanetto, U., Aliabadi, F., (eds.) Multiscale Modelling in Solid Mechanics - Computational Approaches, 2009, Imperial College Press, London., 159–206 ISBN: 978-1-84816-307-2., https://hal.archives-ouvertes.fr/hal-00367772.
Michel, J.-C., Suquet, P., A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J. Mech. Phys. Solids 0022-5096, 90, 2016, 254–285, 10.1016/j.jmps.2016.02.005.
Fritzen, F., Leuschner, M., Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput. Methods Appl. Mech. Engrg. 0045-7825, 260, 2013, 143–154, 10.1016/j.cma.2013.03.007.
Fritzen, F., Hodapp, M., The finite element square reduced (FE2R) method with GPU acceleration: towards three-dimensional two-scale simulations. Internat. J. Numer. Methods Engrg. 107:10 (2016), 853–881, 10.1002/nme.5188.
Wulfinghoff, S., Cavaliere, F., Reese, S., Model order reduction of nonlinear homogenization problems using a Hashin–Shtrikman type finite element method. Comput. Methods Appl. Mech. Engrg. 0045-7825, 330, 2018, 149–179, 10.1016/j.cma.2017.10.019.
Liu, Z., Bessa, M., Liu, W.K., Self-consistent clustering analysis: An efficient multi-scale scheme for inelastic heterogeneous materials. Comput. Methods Appl. Mech. Engrg. 0045-7825, 306, 2016, 319–341, 10.1016/j.cma.2016.04.004.
Wirtz, D., Karajan, N., Haasdonk, B., Surrogate modeling of multiscale models using kernel methods. Internat. J. Numer. Methods Engrg. 1097-0207, 101(1), 2015, 1–28, 10.1002/nme.4767.
Perrin, G., Soize, C., Duhamel, D., Funfschilling, C., Identification of polynomial chaos representations in high dimension from a set of realizations. SIAM J. Sci. Comput. 34:6 (2012), A2917–A2945, 10.1137/11084950X.
Fish, J., Wu, W., A nonintrusive stochastic multiscale solver. Internat. J. Numer. Methods Engrg. 1097-0207, 88(9), 2011, 862–879, 10.1002/nme.3201.
Clément, A., Soize, C., Yvonnet, J., Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis. Internat. J. Numer. Methods Engrg. 1097-0207, 91(8), 2012, 799–824, 10.1002/nme.4293.
Yvonnet, J., Monteiro, E., He, Q.-C., Computational homogenization method and reduced database model for hyperelastic heterogeneous structures. Int. J. Multiscale Comput. Eng. 1543-1649, 11(3), 2013, 201–225.
Bessa, M., Bostanabad, R., Liu, Z., Hu, A., Apley, D.W., Brinson, C., Chen, W., Liu, W.K., A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality. Comput. Methods Appl. Mech. Engrg. 0045-7825, 320, 2017, 633–667, 10.1016/j.cma.2017.03.037.
Wu, L., Nghia Chung, C., Major, Z., Adam, L., Noels, L., A micro-mechanics-based inverse study for stochastic order reduction of elastic UD-fiber reinforced composites analyzes. Internat. J. Numer. Methods Engrg. 0263-8223, 115, 2018, 1430–1456, 10.1016/.
Eshelby, J.D., The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A 241:1226 (1957), 376–396 ISSN: 00804630.
Mori, T., Tanaka, K., Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21:5 (1973), 571–574 cited By (since 1996) 1814.
Benveniste, Y., A new approach to the application of Mori-Tanaka's theory in composite materials. Mech. Mater. 0167-6636, 6(2), 1987, 147–157, 10.1016/0167-6636(87)90005-6.
Kröner, E., Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls. Z. Phys. A 0939-7922, 151, 1958, 504–518, 10.1007/BF01337948.
Hill, R., A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 0022-5096, 13(4), 1965, 213–222, 10.1016/0022-5096(65)90010-4.
Hill, R., Continuum micro-mechanics of elastoplastic polycrystals. J. Mech. Phys. Solids 0022-5096, 13(2), 1965, 89–101, 10.1016/0022-5096(65)90023-2.
Talbot, D.R.S., Willis, J.R., Variational principles for inhomogeneous non-linear media. IMA J. Appl. Math. 35:1 (1985), 39–54, 10.1093/imamat/35.1.39.
Ponte Castañeda, P., Willis, J., The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids 0022-5096, 43(12), 1995, 1919–1951, 10.1016/0022-5096(95)00058-Q.
Gitman, I., Askes, H., Sluys, L., Representative volume: Existence and size determination. Eng. Fract. Mech. 0013-7944, 74(16), 2007, 2518–2534, 10.1016/j.engfracmech.2006.12.021.
Soize, C., Ghanem, R., Data-driven probability concentration and sampling on manifold. J. Comput. Phys. 0021-9991, 321, 2016, 242–258, 10.1016/j.jcp.2016.05.044.
Peerlings, R., de Borst, R., Brekelmans, W., Ayyapureddi, S., Gradient-enhanced damage for quasi-brittle materials. Int. J. Numer. Math. Eng. 39 (1996), 3391–3403.
Peerlings, R., de Borst, R., Brekelmans, W., Geers, M., Gradient-enhanced damage modelling of concrete fracture. Mech. Cohesive-Frict. Mat. 3 (1998), 323–342.
Geers, M.G.D., de Borst, R., Brekelmans, W.A.M., Peerlings, R.H.J., Strain-based transient-gradient damage model for failure analyses. Comput. Methods Appl. Mech. Engrg. 160 (1998), 133–153.
Peerlings, R., Geers, M., de Borst, R., Brekelmans, W., A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38 (2001), 7723–7746.
Wu, L., Sket, F., Molina-Aldareguia, J.M., Makradi, A., Adam, L., Doghri, I., Noels, L., A study of composite laminates failure using an anisotropic gradient-enhanced damage mean-field homogenization model. Compos. Struct. 0263-8223, 126, 2015, 246–264, 10.1016/j.compstruct.2015.02.070.
Doghri, I., Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage. Internat. J. Numer. Methods Engrg. 1097-0207, 38(20), 1995, 3403–3431, 10.1002/nme.1620382004.
Peric, D., de Souza Neto, E.A., Feijóo, R.A., Partovi, M., Molina, A.J.C., On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous materials: unified variational basis and finite element implementation. Internat. J. Numer. Methods Engrg. 1097-0207, 87, 2010, 149–170, 10.1002/nme.3014.
Schröder, J., Labusch, M., Keip, M.-A., Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE2-scheme: Localization and homogenization. Comput. Methods Appl. Mech. Engrg. 0045-7825, 32, 2016, 253–280, 10.1016/j.cma.2015.10.005.
Nguyen, V.-D., Wu, L., Noels, L., Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method. Comput. Mech. 1432-0924, 59(3), 2017, 483–505, 10.1007/s00466-016-1358-z.
Nguyen, V.-D., Wu, L., Noels, L., Multiscale analyses of failure responses in fiber-reinforced composites. Mech. Mater., 2019 under review.
Segurado, J., Llorca, J., A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids 0022-5096, 50(10), 2002, 2107–2121.
Talbot, D.R.S., Willis, J.R., Bounds and self-consistent estimates for the overall properties of nonlinear composites. IMA J. Appl. Math. 39:3 (1987), 215–240, 10.1093/imamat/39.3.215.
Ponte Castañeda, P., The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 0022-5096, 39(1), 1991, 45–71, 10.1016/0022-5096(91)90030-R.
Ponte Castañeda, P., A new variational principle and its application to nonlinear heterogeneous systems. SIAM J. Appl. Math. 52:5 (1992), 1321–1341 ISSN: 00361399.
Talbot, D., Willis, J., Some simple explicit bounds for the overall behaviour of nonlinear composites. Int. J. Solids Struct. 0020-7683, 29(14–15), 1992, 1981–1987, 10.1016/0020-7683(92)90188-Y.
Doghri, I., Ouaar, A., Homogenization of two-phase elasto-plastic composite materials and structures: Study of tangent operators, cyclic plasticity and numerical algorithms. Int. J. Solids Struct. 0020-7683, 40(7), 2003, 1681–1712, 10.1016/S0020-7683(03)00013-1.
Molinari, A., El Houdaigui, F., Tóth, L., Validation of the tangent formulation for the solution of the non-linear eshelby inclusion problem. Int. J. Plast. 0749-6419, 20(2), 2004, 291–307, 10.1016/S0749-6419(03)00038-X.
Wu, L., Noels, L., Adam, L., Doghri, I., A combined incremental–secant mean–field homogenization scheme with per–phase residual strains for elasto–plastic composites. Int. J. Plast. 51 (2013), 80–102, 10.1016/j.ijplas.2013.06.006.
Wu, L., Noels, L., Adam, L., Doghri, I., An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage. Int. J. Solids Struct. 0020-7683, 50(24), 2013, 3843–3860, 10.1016/j.ijsolstr.2013.07.022.
Brassart, L., Stainier, L., Doghri, I., Delannay, L., A variational formulation for the incremental homogenization of elasto-plastic composites. J. Mech. Phys. Solids 0022-5096, 59(12), 2011, 2455–2475, 10.1016/j.jmps.2011.09.004.
Chaboche, J., Kanouté P., Roos, A., On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. Int. J. Plast. 0749-6419, 21(7), 2005, 1409–1434, 10.1016/j.ijplas.2004.07.001.
Wu, L., Adam, L., Doghri, I., Noels, L., An incremental-secant mean-field homogenization method with second statistical moments for elasto-visco-plastic composite materials. Mech. Mater. 0167-6636, 114, 2017, 180–200, 10.1016/j.mechmat.2017.08.006.
Pierard, O., Doghri, I., Study of various estimates of the macroscopic tangent operator in the incremental homogenization of elastoplastic composites. Int. J. Multiscale Comput. Eng. 1543-1649, 4(4), 2006, 521–543.
Doghri, I., Brassart, L., Adam, L., Gérard, J.S., A second-moment incremental formulation for the mean-field homogenization of elasto-plastic composites. Int. J. Plast. 0749-6419, 27(3), 2011, 352–371, 10.1016/j.ijplas.2010.06.004.
Hoang, T.H., Guerich, M., Yvonnet, J., Determining the size of RVE for nonlinear random composites in an incremental computational homogenization framework. J. Eng. Mech., 142(5), 2016, 04016018, 10.1061/(ASCE)EM.1943-7889.0001057.
Yang, S., Yu, S., Ryu, J., Cho, J.-M., Kyoung, W., Han, D.-S., Cho, M., Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection. Int. J. Plast. 0749-6419, 41, 2013, 124–146, 10.1016/j.ijplas.2012.09.010.
Lemaitre, J., Desmorat, R., Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures. 2005, Springer-Verlag, Berlin ISBN: 3540215034.
Mosby, M., Matouš K., On mechanics and material length scales of failure in heterogeneous interfaces using a finite strain high performance solver. Modelling Simulation Mater. Sci. Eng., 23(8), 2015, 085014 http://stacks.iop.org/0965-0393/23/i=8/a=085014.
Nguyen, V.P., Lloberas-Valls, O., Stroeven, M., Sluys, L.J., On the existence of representative volumes for softening quasi-brittle materials – A failure zone averaging scheme. Comput. Methods Appl. Mech. Engrg. 0045-7825, 199(45–48), 2010, 3028–3038, 10.1016/j.cma.2010.06.018.
Verhoosel, C.V., Remmers, J.J.C., Gutiérrez, M.A., de Borst, R., Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Internat. J. Numer. Methods Engrg. 1097-0207, 83(8–9), 2010, 1155–1179, 10.1002/nme.2854.
Wu, L., Tjahjanto, D., Becker, G., Makradi, A., Jérusalem, A., Noels, L., A micro–meso-model of intra-laminar fracture in fiber-reinforced composites based on a discontinuous Galerkin/cohesive zone method. Eng. Fract. Mech. 0013-7944, 104, 2013, 162–183, 10.1016/j.engfracmech.2013.03.018.
N. Nguyen, J. Yvonnet, J. Réthoré A.B. Tran, Identification of fracture models based on phase field for crack propagation in heterogeneous lattices in a context of non-separated scales, Comput. Mech., issn: 1432-0924, https://doi.org/10.1007/s00466-018-1636-z.
Wu, L., Becker, G., Noels, L., Elastic damage to crack transition in a coupled non-local implicit discontinuous galerkin/extrinsic cohesive law framework. Comput. Methods Appl. Mech. Engrg. 0045-7825, 279, 2014, 379–409, 10.1016/j.cma.2014.06.031.
Leclerc, J., Wu, L., Nguyen, V.D., Noels, L., A damage to crack transition model accounting for stress triaxiality formulated in a hybrid nonlocal implicit discontinuous galerkin cohesive band model framework. Internat. J. Numer. Methods Engrg. 113:3 (2018), 374–410, 10.1002/nme.5618.
Doghri, I., Mechanics of Deformable Solids- Linear, Nonlinear, Analytical and Computational Aspects. 2000, Springer-Verlag, Berlin ISBN: 3540669604.