Paper published in a journal (Scientific congresses and symposiums)
Fully leafed induced subtrees
Blondin Massé, Alexandre; De Carufel, Julien; Goupil, Alain et al.
2018In Lecture Notes in Computer Science, 10979
Peer reviewed
 

Files


Full Text
Fully_leafed_preprint.pdf
Author preprint (1.02 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Graph theory; Induced subtrees; Leaf; Branch and bound algorithm; Dynamical programming
Abstract :
[en] We consider the problem LIS of deciding whether there exists an induced subtree with exactly 𝑖≤𝑛 vertices and ℓ leaves in a given graph G with n vertices. We study the associated optimization problem, that consists in computing the maximal number of leaves, denoted by 𝐿𝐺(𝑖), realized by an induced subtree with i vertices, for 0≤𝑖≤𝑛. We begin by proving that the LIS problem is NP-complete in general. Then, we describe a nontrivial branch and bound algorithm that computes the function 𝐿𝐺 for any simple graph G. In the special case where G is a tree of maximum degree 𝛥, we provide a O(𝛥𝑛^3) time and O(𝑛^2) space algorithm to compute the function 𝐿𝐺.
Disciplines :
Mathematics
Author, co-author :
Blondin Massé, Alexandre;  Université du Québec à Montréal
De Carufel, Julien;  Université du Québec à Trois Rivières
Goupil, Alain;  Université du Québec à Trois Rivières
Lapointe, Mélodie;  Université du Québec à Montréal
Nadeau, Émile;  Université du Québec à Montréal
Vandomme, Elise ;  Université de Liège - ULiège > Département de mathématique > Probabilités et statistique mathématique
Language :
English
Title :
Fully leafed induced subtrees
Publication date :
2018
Event name :
29th International Workshop on Combi- natorial Algorithms (IWOCA)
Event place :
Singapour, Singapore
Event date :
16-19 July 2018
Audience :
International
Journal title :
Lecture Notes in Computer Science
ISSN :
0302-9743
eISSN :
1611-3349
Publisher :
Springer, Germany
Volume :
10979
Peer reviewed :
Peer reviewed
Available on ORBi :
since 17 January 2019

Statistics


Number of views
41 (4 by ULiège)
Number of downloads
85 (0 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenCitations
 
2
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi