Spinal Muscular Atrophies of Childhood/complications/epidemiology/physiopathology; Young Adult
Abstract :
[en] Spinal muscular atrophy (SMA) is a monogenic disorder caused by loss of function mutations in the survival motor neuron 1 gene, which results in a broad range of disease severity, from neonatal to adult onset. There is currently a concerted effort to define the natural history of the disease and develop outcome measures that accurately capture its complexity. As several therapeutic strategies are currently under investigation and both the FDA and EMA have recently approved the first medical treatment for SMA, there is a critical need to identify the right association of responsive outcome measures and biomarkers for individual patient follow-up. As an approved treatment becomes available, untreated patients will soon become rare, further intensifying the need for a rapid, prospective and longitudinal study of the natural history of SMA Type 2 and 3. Here we present the baseline assessments of 81 patients aged 2 to 30 years of which 19 are non-sitter SMA Type 2, 34 are sitter SMA Type 2, 9 non-ambulant SMA Type 3 and 19 ambulant SMA Type 3. Collecting these data at nine sites in France, Germany and Belgium established the feasibility of gathering consistent data from numerous and demanding assessments in a multicenter SMA study. Most assessments discriminated between the four groups well. This included the Motor Function Measure (MFM), pulmonary function testing, strength, electroneuromyography, muscle imaging and workspace volume. Additionally, all of the assessments showed good correlation with the MFM score. As the untreated patient population decreases, having reliable and valid multi-site data will be imperative for recruitment in clinical trials. The pending two-year study results will evaluate the sensitivity of the studied outcomes and biomarkers to disease progression. TRIAL REGISTRATION: ClinicalTrials.gov (NCT02391831).
Disciplines :
Pediatrics Neurology
Author, co-author :
Chabanon, Aurelie; Institute of Myology, GH Pitié-Salpêtrière, Paris, France
Seferian, Andreea Mihaela; Institute of Myology, GH Pitié Salpêtrière, Paris, France
DARON, Aurore ; Centre Hospitalier Universitaire de Liège - CHU > Département de Pédiatrie > Service de pédiatrie
Pereon, Yann; Centre de Référence Maladies Neuromusculaires Atlantique-Occitanie-Caraïbes, Hopital Hôtel-Dieu, Nantes, France
Cances, Claude; Centre de Référence des Maladies Neuromusculaires, Hôpital des Enfants, Toulouse, France
Vuillerot, Carole; Service de rééducation pédiatrique infantile ºL'Escaleº, Hôpital Mère Enfant, CHU Lyon, France
De Waele, Liesbeth; Department of Pediatric Neurology, University Hospitals Leuven, Belgium
Cuisset, Jean-Marie; Centre de Référence des Maladies Neuromusculaires, Hôpital Roger Salengro, Lille, France
Laugel, Vincent; Neuropédiatrie/INSERM CIC 1434, CHU Strasbourg Hautepierre, Strasbourg, France
Schara, Ulrike; Paediatric neurology and neuromuscular center, University of Essem, Germany
Gidaro, Teresa; Institute of Myology, GH Pitié Salpêtrière, Paris, France
Gilabert, Stephanie; Institute of Myology, GH Pitié Salpêtrière, Paris, France
Hogrel, Jean-Yves; Institute of Myology, GH Pitié Salpêtrière, Paris, France
Baudin, Pierre-Yves; Consultants for Research in Imaging and Spectroscopy (CRIS), Tournai, Belgium
Carlier, Pierre; Institute of Myology, GH Pitié Salpêtrière, Paris, France
Fournier, Emmanuel; Institute of Myology, GH Pitié Salpêtrière, Paris, France
Lowes, Linda Pax; Center for Gene Therapy, Nationwide Children's Hospital, Columbus, Ohio, USA
Hellbach, Nicole; Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
Seabrook, Timothy; Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
Toledano, Elie; Institut Roche, Paris, France
Annoussamy, Melanie; Institute of Myology, GH Pitié Salpêtrière, Paris, France
Servais, Laurent ; Université de Liège - ULiège > Département des sciences cliniques > Neuropédiatrie
Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995; 80(1):155–65. PMID: 7813012
Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet. 1997; 6(8):1205–14. PMID: 9259265
Munsat TL, Davies KE. International SMA consortium meeting. (26–28 June 1992, Bonn, Germany). Neuromuscul Disord. 1992; 2(5–6):423–8. PMID: 1300191
Zerres K, Rudnik-Schoneborn S. Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch Neurol. 1995; 52 (5):518–23. PMID: 7733848
Russman BS, Buncher CR, White M, Samaha FJ, Iannaccone ST. Function changes in spinal muscular atrophy II and III. The DCN/SMA Group. Neurology. 1996; 47(4):973–6. PMID: 8857729
Wirth B, Garbes L, Riessland M. How genetic modifiers influence the phenotype of spinal muscular atrophy and suggest future therapeutic approaches. Curr Opin Genet Dev. 2013; 23(3):330–8. https://doi.org/10.1016/j.gde.2013.03.003 PMID: 23602330
Czech C, Tang W, Bugawan T, Mano C, Horn C, Iglesias VA, et al. Biomarker for Spinal Muscular Atrophy: Expression of SMN in Peripheral Blood of SMA Patients and Healthy Controls. PLoS One. 2015; 10(10):e0139950. https://doi.org/10.1371/journal.pone.0139950 PMID: 26468953
Kaufmann P, McDermott MP, Darras BT, Finkel RS, Sproule DM, Kang PB, et al. Prospective cohort study of spinal muscular atrophy types 2 and 3. Neurology. 2012; 79(18):1889–97. https://doi.org/10.1212/WNL.0b013e318271f7e4 PMID: 23077013
Finkel RS, McDermott MP, Kaufmann P, Darras BT, Chung WK, Sproule DM, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014; 83(9):810–7. https://doi.org/10.1212/WNL.0000000000000741 PMID: 25080519
Kolb SJ, Coffey CS, Yankey JW, Krosschell K, Arnold WD, Rutkove SB, et al. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann Clin Transl Neurol. 2016; 3(2):132–45. https://doi.org/10.1002/acn3.283 PMID: 26900585
Cano SJ, Mayhew A, Glanzman AM, Krosschell KJ, Swoboda KJ, Main M, et al. Rasch analysis of clinical outcome measures in spinal muscular atrophy. Muscle Nerve. 2014; 49(3):422–30. https://doi.org/10.1002/mus.23937 PMID: 23836324
Bonati U, Holiga S, Hellbach N, Risterucci C, Bergauer T, Tang W, et al. Longitudinal characterization of biomarkers for spinal muscular atrophy. Ann Clin Transl Neurol. 2017; 4(5):292–304. https://doi.org/10.1002/acn3.406 PMID: 28491897
Lowes LP, Alfano LN, Crawfis R, Berry K, Yin H, Dvorchik I, et al. Reliability and validity of active-seated: An outcome in dystrophinopathy. Muscle Nerve. 2015; 52(3):356–62. https://doi.org/10.1002/mus.24557 PMID: 25641021
Le Moing AG, Seferian AM, Moraux A, Annoussamy M, Dorveaux E, Gasnier E, et al. A Movement Monitor Based on Magneto-Inertial Sensors for Non-Ambulant Patients with Duchenne Muscular Dystrophy: A Pilot Study in Controlled Environment. PLoS One. 2016; 11(6):e0156696. https://doi.org/10.1371/journal.pone.0156696 PMID: 27271157
Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. 2016; 86(10):890–7. https://doi.org/10.1212/WNL.0000000000002445 PMID: 26865511
Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J, De Vivo DC, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016; 388(10063):3017–26. https://doi.org/10.1016/S0140-6736(16)31408-8 PMID: 27939059
Finkel RS, Mercuri E, Darras BT, Connolly AM, Kuntz NL, Kirschner J, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. N Engl J Med. 2017; 377(18):1723–32. https://doi.org/10.1056/NEJMoa1702752 PMID: 29091570
Berard C, Payan C, Hodgkinson I, Fermanian J, Group MFMCS. A motor function measure for neuromuscular diseases. Construction and validation study. Neuromuscul Disord. 2005; 15(7):463–70. PMID: 16106528
Seferian AM, Moraux A, Canal A, Decostre V, Diebate O, Le Moing AG, et al. Upper limb evaluation and one-year follow up of non-ambulant patients with spinal muscular atrophy: an observational multicenter trial. PLoS One. 2015; 10(4):e0121799. https://doi.org/10.1371/journal.pone.0121799 PMID: 25861036
Iannaccone ST, Hynan LS, American Spinal Muscular Atrophy Randomized Trials G. Reliability of 4 outcome measures in pediatric spinal muscular atrophy. Arch Neurol. 2003; 60(8):1130–6. https://doi.org/10.1001/archneur.60.8.1130 PMID: 12925371
Neve V, Cuisset JM, Edme JL, Carpentier A, Howsam M, Leclerc O, et al. Sniff nasal inspiratory pressure in the longitudinal assessment of young Duchenne muscular dystrophy children. Eur Respir J. 2013; 42(3):671–80. https://doi.org/10.1183/09031936.00127712 PMID: 23258781
Dunaway Young S, Montes J, Kramer SS, Marra J, Salazar R, Cruz R, et al. Six-minute walk test is reliable and valid in spinal muscular atrophy. Muscle Nerve. 2016; 54(5):836–42. https://doi.org/10.1002/mus.25120 PMID: 27015431
Roelants M, Hauspie R, Hoppenbrouwers K. References for growth and pubertal development from birth to 21 years in Flanders, Belgium. Ann Hum Biol. 2009; 36(6):680–94. https://doi.org/10.3109/ 03014460903049074 PMID: 19919503
de Lattre C, Payan C, Vuillerot C, Rippert P, de Castro D, Berard C, et al. Motor function measure: validation of a short form for young children with neuromuscular diseases. Arch Phys Med Rehabil. 2013; 94(11):2218–26. https://doi.org/10.1016/j.apmr.2013.04.001 PMID: 23602884
Vuillerot C, Payan C, Iwaz J, Ecochard R, Berard C, Group MFMSMAS. Responsiveness of the motor function measure in patients with spinal muscular atrophy. Arch Phys Med Rehabil. 2013; 94(8):1555–61. https://doi.org/10.1016/j.apmr.2013.01.014 PMID: 23380348
Bertini E, Dessaud E, Mercuri E, Muntoni F, Kirschner J, Reid C, et al. Safety and efficacy of olesoxime in patients with type 2 or non-ambulatory type 3 spinal muscular atrophy: a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol. 2017.
Servais L, Deconinck N, Moraux A, Benali M, Canal A, Van Parys F, et al. Innovative methods to assess upper limb strength and function in non-ambulant Duchenne patients. Neuromuscul Disord. 2013; 23 (2):139–48. https://doi.org/10.1016/j.nmd.2012.10.022 PMID: 23219352
Crapo RO, Morris AH, Gardner RM. Reference spirometric values using techniques and equipment that meet ATS recommendations. Am Rev Respir Dis. 1981; 123(6):659–64. https://doi.org/10.1164/arrd.1981.123.6.659 PMID: 7271065
Bianchi C, Baiardi P. Cough peak flows: standard values for children and adolescents. Am J Phys Med Rehabil. 2008; 87(6):461–7. https://doi.org/10.1097/PHM.0b013e318174e4c7 PMID: 18496248
Wilson SH, Cooke NT, Edwards RH, Spiro SG. Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax. 1984; 39(7):535–8. PMID: 6463933
Stefanutti D, Fitting JW. Sniff nasal inspiratory pressure. Reference values in Caucasian children. Am J Respir Crit Care Med. 1999; 159(1):107–11. https://doi.org/10.1164/ajrccm.159.1.9804052 PMID: 9872826
Uldry C, Fitting JW. Maximal values of sniff nasal inspiratory pressure in healthy subjects. Thorax. 1995; 50(4):371–5. PMID: 7785009
Hogrel JY. Grip strength measured by high precision dynamometry in healthy subjects from 5 to 80 years. BMC Musculoskelet Disord. 2015; 16:139. https://doi.org/10.1186/s12891-015-0612-4 PMID: 26055647
McDonald CM, Henricson EK, Han JJ, Abresch RT, Nicorici A, Elfring GL, et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve. 2010; 41(4):500–10. https://doi.org/10.1002/mus.21544 PMID: 19941337
Merlini L, Bertini E, Minetti C, Mongini T, Morandi L, Angelini C, et al. Motor function-muscle strength relationship in spinal muscular atrophy. Muscle Nerve. 2004; 29(4):548–52. https://doi.org/10.1002/mus.20018 PMID: 15052620
Glover GH, Schneider E. Three-point Dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med. 1991; 18(2):371–83. PMID: 2046518
Azzabou N, Loureiro de Sousa P, Caldas E, Carlier PG. Validation of a generic approach to muscle water T2 determination at 3T in fat-infiltrated skeletal muscle. J Magn Reson Imaging. 2015; 41(3):645–53. https://doi.org/10.1002/jmri.24613 PMID: 24590466
Wary C, Azzabou N, Giraudeau C, Le Louer J, Montus M, Voit T, et al. Quantitative NMRI and NMRS identify augmented disease progression after loss of ambulation in forearms of boys with Duchenne muscular dystrophy. NMR Biomed. 2015; 28(9):1150–62. https://doi.org/10.1002/nbm.3352 PMID: 26215733
Carlier PG. Global T2 versus water T2 in NMR imaging of fatty infiltrated muscles: different methodology, different information and different implications. Neuromuscul Disord. 2014; 24(5):390–2. https://doi.org/10.1016/j.nmd.2014.02.009 PMID: 24656605
Geiger R, Strasak A, Treml B, Gasser K, Kleinsasser A, Fischer V, et al. Six-minute walk test in children and adolescents. J Pediatr. 2007; 150(4):395–9, 9 e1-2. https://doi.org/10.1016/j.jpeds.2006.12.052PMID: 17382117
Gibbons WJ, Fruchter N, Sloan S, Levy RD. Reference values for a multiple repetition 6-minute walk test in healthy adults older than 20 years. J Cardiopulm Rehabil. 2001; 21(2):87–93. PMID: 11314289
Kaufmann P, McDermott MP, Darras BT, Finkel R, Kang P, Oskoui M, et al. Observational study of spinal muscular atrophy type 2 and 3: functional outcomes over 1 year. Arch Neurol. 2011; 68(6):779–86. https://doi.org/10.1001/archneurol.2010.373 PMID: 21320981
Fujak A, Ingenhorst A, Heuser K, Forst R, Forst J. Treatment of scoliosis in intermediate spinal muscular atrophy (SMA type II) in childhood. Ortop Traumatol Rehabil. 2005; 7(2):175–9. PMID: 17615511
Dunaway S, Montes J, McDermott MP, Martens W, Neisen A, Glanzman AM, et al. Physical therapy services received by individuals with spinal muscular atrophy (SMA). J Pediatr Rehabil Med. 2016; 9 (1):35–44. https://doi.org/10.3233/PRM-160360 PMID: 26966799
Wang CH, Finkel RS, Bertini ES, Schroth M, Simonds A, Wong B, et al. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol. 2007; 22(8):1027–49. https://doi.org/10.1177/ 0883073807305788 PMID: 17761659
Finkel R, Bertini E, Muntoni F, Mercuri E, Group ESWS. 209th ENMC International Workshop: Outcome Measures and Clinical Trial Readiness in Spinal Muscular Atrophy 7–9 November 2014, Heemskerk, The Netherlands. Neuromuscul Disord. 2015; 25(7):593–602. https://doi.org/10.1016/j.nmd.2015.04. 009 PMID: 26045156
Ramsey D, Scoto M, Mayhew A, Main M, Mazzone ES, Montes J, et al. Revised Hammersmith Scale for spinal muscular atrophy: A SMA specific clinical outcome assessment tool. PLoS One. 2017; 12(2): e0172346. https://doi.org/10.1371/journal.pone.0172346 PMID: 28222119
Mercuri E, Finkel R, Montes J, Mazzone ES, Sormani MP, Main M, et al. Patterns of disease progression in type 2 and 3 SMA: Implications for clinical trials. Neuromuscul Disord. 2016; 26(2):126–31. https://doi.org/10.1016/j.nmd.2015.10.006 PMID: 26776503
Mazzone E, De Sanctis R, Fanelli L, Bianco F, Main M, van den Hauwe M, et al. Hammersmith Functional Motor Scale and Motor Function Measure-20 in non ambulant SMA patients. Neuromuscul Disord. 2014; 24(4):347–52. https://doi.org/10.1016/j.nmd.2014.01.003 PMID: 24491485
Khirani S, Colella M, Caldarelli V, Aubertin G, Boule M, Forin V, et al. Longitudinal course of lung function and respiratory muscle strength in spinal muscular atrophy type 2 and 3. Eur J Paediatr Neurol. 2013; 17(6):552–60. https://doi.org/10.1016/j.ejpn.2013.04.004 PMID: 23672834
Montes J, McDermott MP, Martens WB, Dunaway S, Glanzman AM, Riley S, et al. Six-Minute Walk Test demonstrates motor fatigue in spinal muscular atrophy. Neurology. 2010; 74(10):833–8. https://doi.org/10.1212/WNL.0b013e3181d3e308 PMID: 20211907
Pereira AC, Ribeiro MG, Araujo AP. Timed motor function tests capacity in healthy children. Arch Dis Child. 2016; 101(2):147–51. https://doi.org/10.1136/archdischild-2014-307396 PMID: 26566688
Yonekawa T, Komaki H, Saito Y, Sugai K, Sasaki M. Peripheral nerve abnormalities in pediatric patients with spinal muscular atrophy. Brain Dev. 2013; 35(2):165–71. https://doi.org/10.1016/j.braindev.2012.03.009 PMID: 22512990
Kang PB, Gooch CL, McDermott MP, Darras BT, Finkel RS, Yang ML, et al. The motor neuron response to SMN1 deficiency in spinal muscular atrophy. Muscle Nerve. 2014; 49(5):636–44. https://doi.org/10.1002/mus.23967 PMID: 23893312
Swoboda KJ, Prior TW, Scott CB, McNaught TP, Wride MC, Reyna SP, et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Ann Neurol. 2005; 57(5):704–12. https://doi.org/10.1002/ana.20473 PMID: 15852397
Farrar MA, Vucic S, Johnston HM, du Sart D, Kiernan MC. Pathophysiological insights derived by natural history and motor function of spinal muscular atrophy. J Pediatr. 2013; 162(1):155–9. https://doi.org/10.1016/j.jpeds.2012.05.067 PMID: 22809660
Lewelt A, Krosschell KJ, Scott C, Sakonju A, Kissel JT, Crawford TO, et al. Compound muscle action potential and motor function in children with spinal muscular atrophy. Muscle Nerve. 2010; 42(5):703–8. https://doi.org/10.1002/mus.21838 PMID: 20737553
Wadman RI, Vrancken AF, van den Berg LH, van der Pol WL. Dysfunction of the neuromuscular junction in spinal muscular atrophy types 2 and 3. Neurology. 2012; 79(20):2050–5. https://doi.org/10.1212/WNL.0b013e3182749eca PMID: 23115209
Kobayashi DT, Shi J, Stephen L, Ballard KL, Dewey R, Mapes J, et al. SMA-MAP: a plasma protein panel for spinal muscular atrophy. PLoS One. 2013; 8(4):e60113. https://doi.org/10.1371/journal.pone. 0060113 PMID: 23565191
Crawford TO, Paushkin SV, Kobayashi DT, Forrest SJ, Joyce CL, Finkel RS, et al. Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA) clinical study. PLoS One. 2012; 7(4):e33572. https://doi.org/10.1371/journal.pone.0033572 PMID: 22558076