malaria; diagnosis; asymptomatic; active detection; Peru
Abstract :
[en] Background: Faced with the resurgence of malaria, malaria surveillance in the Peruvian
Amazon incorporated consecutive active case detection (ACD) interventions using light microscopy
(LM) as reactive measure in communities with an unusual high number of cases during high
transmission season (HTS). We assessed the effectiveness in malaria detection of this local
ACD-based strategy. Methods: A cohort study was conducted in June–July 2015 in Mazan, Loreto.
Four consecutive ACD interventions at intervals of 10 days were conducted in four riverine
communities (Gamitanacocha, Primero de Enero, Libertad and Urco Miraño). In each intervention,
all inhabitants were visited at home, and finger-prick blood samples collected for immediate diagnosis by LM and on filter paper for later analysis by quantitative real-time polymerase chain reaction (qPCR). Effectiveness was calculated by dividing the number of malaria infections detected using LM by the number of malaria infections detected by delayed qPCR. Results: Most community inhabitants (88.1%, 822/933) were present in at least one of the four ACD interventions. A total of 451 infections were detected by qPCR in 446 participants (54.3% of total participants); five individuals had two infections. Plasmodium vivax was the predominant species (79.8%), followed by P. falciparum (15.3%) and P. vivax-P. falciparum co-infections (4.9%). Most qPCR-positive infections were asymptomatic (255/448, 56.9%). The ACD-strategy using LM had an effectiveness of 22.8% (detection of 103 of the total qPCR-positive infections). Children aged 5–14 years, and farming as main economic activity were associated with P. vivax infections. Conclusions: Although the ACD-strategy using LM increased the opportunity of detecting and treating malaria infections during HTS, the number of detected infections was considerably lower than the real burden of infections (those detected by qPCR).
Disciplines :
Laboratory medicine & medical technology Public health, health care sciences & services Immunology & infectious disease
Author, co-author :
Moreno-Gutierrez, Diamantina
Llanos-Cuentas, Alejandro
Barboza, José Luis
Contreras-Mancilla, Juan
Gamboa, Dionicia
Rodriguez, Hugo
Carrasco-Escobar, Gabriel
BOREUX, Raphaël ; Centre Hospitalier Universitaire de Liège - CHU > Unilab > Laboratoire biologie moléculaire
Hayette, Marie-Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Bactériologie, mycologie, parasitologie, virologie
Beutels, Philippe
Speybroeck, Niko
Rosas-Aguirre, Angel
Language :
English
Title :
Effectiveness of a Malaria Surveillance Strategy based on active case detection during high transmission season in the Peruvian Amazon
Alternative titles :
[en] Efficacité de la stratégie de surveillance de la malaria fondée sur la détection active durant la haute saison de transmisison dans la région amazonienne au Pérou
Publication date :
27 November 2018
Journal title :
International Journal of Environmental Research and Public Health
ISSN :
1660-4601
eISSN :
1661-7827
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
World Health Organization. World Malaria Report 2016; World Health Organization: Geneva, Switzerland, 2016.
World Health Organization. Eliminating Malaria; World Health Organization: Geneva, Switzerland, 2016.
Ministerio de Salud del Perú-Dirección General de Epidemiología. Análisis de la Situación de Salud del Perú; ASIS 2010; MINSA: Lima, Peru, 2010.
Ministerio de Salud Peru-Centro Nacional de Epidemiología, Prevención y Control de Enfermedades. Sala Situacional Malaria; MINSA: Lima, Peru, 2017.
Proyecto Control de la Malaria en Zonas Fronterizas de la Región Andina: Un enfoque comunitario—PAMAFRO. Compartiendo Lecciones Aprendidas; ORAS-CONHU: Lima, Peru, 2009.
Aramburú Guarda, J.; Ramal Asayag, C.; Witzig, R. Malaria reemergence in the Peruvian Amazon region. Emerg. Infect. Dis. 1999, 5, 209–215. [CrossRef] [PubMed]
Pinkerton, K.; Rom, W. Global Climate Change and Public Health; Springer: New York, NY, USA, 2014.
World Health Organization. Test.Treat.Track. Scaling Up Diagnostic Testing, Treatment and Surveillance for Malaria; World Health Organization: Geneva, Switzerland, 2012.
World Health Organization. Disease Surveillance for Malaria Elimination: Operational Manual; World Health Organization: Geneva, Switzerland, 2012.
World Health Organization. Malaria Elimination. A Field Manual for Low and Moderate Endemic Countries; World Health Organization: Geneva, Switzerland, 2007.
Ministerio de Salud del Perú. Norma Técnica Para la Atención de la Malaria y Malaria Severa en el PerU; NTS Nro. 054-MINSA/DGSP-V.01, modificada en Febrero 2015; MINSA: Lima, Peru, 2015.
World Health Organization. Malaria Light Microscopy: Creating a Culture of Quality; World Health Organization: Geneva, Switzerland, 2009.
Branch, O.; Casapia, W.M.; Gamboa, D.V.; Hernandez, J.N.; Alava, F.F.; Roncal, N.; Alvarez, E.; Perez, E.J.; Gotuzzo, E. Clustered local transmission and asymptomatic Plasmodium falciparum and Plasmodium vivax malaria infections in a recently emerged, hypoendemic Peruvian Amazon community. Malar. J. 2005, 23, 27. [CrossRef] [PubMed]
Roshanravan, B.; Kari, E.; Gilman, R.H.; Cabrera, L.; Lee, E.; Metcalfe, J.; Calderon, M.; Lescano, A.G.; Montenegro, S.H.; Calampa, C.; et al. Endemic malaria in the Peruvian Amazon region of Iquitos. Am. J. Trop. Med. Hyg. 2003, 69, 45–52. [CrossRef] [PubMed]
Rosas-Aguirre, A.; Speybroeck, N.; Llanos-Cuentas, A.; Rosanas-Urgell, A.; Carrasco-Escobar, G.; Rodriguez, H.; Gamboa, D.; Contreras-Mancilla, J.; Alava, F.; Soares, I.S.; et al. Hotspots of Malaria Transmission in the Peruvian Amazon: Rapid Assessment through a Parasitological and Serological Survey. PLoS ONE 2015, 10, e0137458. [CrossRef] [PubMed]
Moonen, B.; Cohen, J.M.; Snow, R.W.; Slutsker, L.; Drakeley, C.; Smith, D.L.; Abeyasinghe, R.R.; Rodriguez, M.H.; Maharaj, R.; Tanner, M.; et al. Operational strategies to achieve and maintain malaria elimination. The Lancet 2010, 376, 1592–1603. [CrossRef]
Sturrock, H.J.W.; Hsiang, M.S.; Cohen, J.M.; Smith, D.L.; Greenhouse, B.; Bousema, T.; Gosling, R.D. Targeting asymptomatic malaria infections: Active surveillance in control and elimination. PLoS Med. 2013, 10. [CrossRef] [PubMed]
Macauley, C. Aggressive active case detection: A malaria control strategy based on the Brazilian model. Soc. Sci. Med. 2005, 60, 563–573. [CrossRef] [PubMed]
Stresman, G.H.; Kamanga, A.; Moono, P.; Hamapumbu, H.; Mharakurwa, S.; Kobayashi, T.; Moss, W.J.; Shiff, C. A method of active case detection to target reservoirs of asymptomatic malaria and gametocyte carriers in a rural area in Southern Province, Zambia. Malar. J. 2010, 9, 265. [PubMed]
Smith Gueye, C.; Sanders, K.C.; Galappaththy, G.N.L.; Rundi, C.; Tobgay, T.; Sovannaroth, S.; Gao, Q.; Surya, A.; Thakur, G.D.; Baquilod, M.; et al. Active case detection for malaria elimination: A survey among Asia Pacific countries. Malar. J. 2013, 9, 358. [CrossRef] [PubMed]
Dormond, L.; Jaton-Ogay, K.; de Vallière, S.; Genton, B.; Bille, J.; Greub, G. Multiplex real-time PCR for the diagnosis of malaria: Correlation with microscopy. Clin. Microbiol. Infect. 2011, 17, 469–475. [CrossRef] [PubMed]
Ministerio de Salud Perú. Dirección Regional de Salud Loreto. Boletín Epidemiológico SE 52-2015 [Internet]. 2016. Available online: http://www.diresaloreto.gob.pe/epidemiologia/boletines-epidemiologicos-2015/(accessed on 19 June 2017).
PERÚ Instituto Nacional de Estadística e Informática [Internet]. Available online: http://www.inei.gob.pe/(accessed on 7 March 2017).
Boletín Epidemiológico Perú [Internet]. Available online: http://www.dge.gob.pe/portal/docs/vigilancia/boletines/2013/52.pdf (accessed on 19 September 2018).
Parker, B.S.; Paredes Olortegui, M.; Peñataro Yori, P.; Escobedo, K.; Florin, D.; Rengifo Pinedo, S.; Greffa, R.C.; Vega, L.C.; Ferrucci, H.R.; Pan, W.K.; et al. Hyperendemic malaria transmission in areas of occupation-related travel in the Peruvian Amazon. Malar. J. 2013, 12, 178. [CrossRef] [PubMed]
Llanos-Cuentas, A.; Lacerda, M.V.; Rueangweerayut, R.; Krudsood, S.; Gupta, S.K.; Kochar, S.K.; Arthur, P.; Chuenchom, N.; Möhrle, J.J.; Duparc, S.; et al. Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): A multicentre, double-blind, randomised, phase 2b dose-selection study. Lancet Lond. Engl. 2014, 383, 1049–1058. [CrossRef]
Marquiño, W.; Huilca, M.; Calampa, C.; Falconí, E.; Cabezas, C.; Naupay, R.; RUEBUSH, T.K., II. Efficacy of mefloquine and a mefloquine-artesunate combination therapy for the treatment of uncomplicated Plasmodium falciparum malaria in the Amazon Basin of Peru. Am. J. Trop. Med. Hyg. 2003, 68, 608–612. [CrossRef] [PubMed]
Bi, Y.; Hu, W.; Liu, H.; Xiao, Y.; Guo, Y.; Chen, S.; Zhao, L.; Tong, S. Can slide positivity rates predict malaria transmission? Malar. J. 2012, 11, 117. [CrossRef] [PubMed]
Ministerio de Salud del Perú. Manual de Procedimientos de Laboratorio Para el Diagnóstico de Malaria. Serie de Normas Técnicas N◦ 39. [Internet]. 2003. Available online: http://www.ins.gob.pe/repositorioaps/0/4/jer/-1/Antimalaricos/manualMALARIA.pdf (accessed on 6 June 2017).
Mangold, K.A.; Manson, R.U.; Koay, E.S.C.; Stephens, L.; Regner, M.; Thomson, R.B.; Peterson, L.R.; Kaul, K.L. Real-time PCR for detection and identification of Plasmodium spp. J. Clin. Microbiol. 2005, 43, 2435–2440. [CrossRef] [PubMed]
Cnops, L.; Jacobs, J.; Van Esbroeck, M. Validation of a four-primer real-time PCR as a diagnostic tool for single and mixed Plasmodium infections. Clin. Microbiol. Infect. 2011, 17, 1101–1107. [CrossRef] [PubMed]
World Health Organization. WHO malaria Terminology; World Health Organization: Geneva, Switzerland, 2016.
Antinori, S.; Galimberti, L.; Milazzo, L.; Corbellino, M. Biology of Human Malaria Plasmodia Including Plasmodium Knowlesi. Mediterr. J. Hematol. Infect. Dis. 2012, 4. [CrossRef] [PubMed]
Parekh, F.K.; Hernandez, J.N.; Krogstad, D.J.; Casapia, W.M.; Branch, O.H. Prevalence and risk of Plasmodium falciparum and P. vivax malaria among pregnant women living in the hypoendemic communities of the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2007, 77, 451–457. [CrossRef] [PubMed]
Rosas-Aguirre, A.; Guzman-Guzman, M.; Gamboa, D.; Chuquiyauri, R.; Ramirez, R.; Manrique, P.; Carrasco-Escobar, G.; Puemape, C.; Llanos-Cuentas, A.; Vinetz, J.M. Micro-heterogeneity of malaria transmission in the Peruvian Amazon: A baseline assessment underlying a population-based cohort study. Malar. J. 2017, 16, 312. [CrossRef] [PubMed]
Rovira-Vallbona, E.; Contreras-Mancilla, J.J.; Ramirez, R.; Guzmán-Guzmán, M.; Carrasco-Escobar, G.; Llanos-Cuentas, A.; Vinetz, J.M.; Gamboa, D.; Rosanas-Urgell, A. Predominance of asymptomatic and sub-microscopic infections characterizes the Plasmodium gametocyte reservoir in the Peruvian Amazon. PLoS Negl. Trop. Dis. 2017, 11, e0005674. [CrossRef] [PubMed]
Bousema, T.; Drakeley, C. Epidemiology and Infectivity of Plasmodium falciparum and Plasmodium vivax Gametocytes in Relation to Malaria Control and Elimination. Clin. Microbiol. Rev. 2011, 24, 377–410. [CrossRef] [PubMed]
World Health Organization. Meeting Report of the WHO Evidence Review Group on Low-Density Malaria Infections; World Health Organization: Geneva, Switzerland, 2017.
Nguyen, T.-N.; von Seidlein, L.; Nguyen, T.-V.; Truong, P.-N.; Hung, S.D.; Pham, H.-T.; Nguyen, T.U.; Le, T.D.; Mukaka, M.; Day, N.P.; et al. The persistence and oscillations of submicroscopic Plasmodium falciparum and Plasmodium vivax infections over time in Vietnam: An open cohort study. Lancet Infect. Dis. 2018, 18, 565–572. [CrossRef]
Da Silva-Nunes, M.; Ferreira, M.U. Clinical spectrum of uncomplicated malaria in semi-immune Amazonians: Beyond the “symptomatic” vs “asymptomatic” dichotomy. Mem. Inst. Oswaldo Cruz. 2007, 102, 341–347. [CrossRef] [PubMed]
Thanh, P.V.; Van Hong, N.; Van Van, N.; Van Malderen, C.; Obsomer, V.; Rosanas-Urgell, A.; Grietens, K.P.; Xa, N.X.; Bancone, G.; Chowwiwat, N.; et al. Epidemiology of forest malaria in Central Vietnam: The hidden parasite reservoir. Malar. J. 2015, 14. [CrossRef] [PubMed]
Almeida, A.C.G.; Kuehn, A.; Castro, A.J.M.; Vitor-Silva, S.; Figueiredo, E.F.G.; Brasil, L.W.; Brito, M.A.; Sampaio, V.S.; Bassat, Q.; Felger, I.; et al. High proportions of asymptomatic and submicroscopic Plasmodium vivax infections in a peri-urban area of low transmission in the Brazilian Amazon. Parasit. Vectors. 2018, 11, 194. [CrossRef] [PubMed]
Mueller, I.; Galinski, M.R.; Tsuboi, T.; Arevalo-Herrera, M.; Collins, W.E.; King, C.L. Natural acquisition of immunity to Plasmodium vivax: Epidemiological observations and potential targets. Adv. Parasitol. 2013, 81, 77–131. [CrossRef] [PubMed]
White, M.T.; Karl, S.; Battle, K.E.; Hay, S.I.; Mueller, I.; Ghani, A.C. Modelling the contribution of the hypnozoite reservoir to Plasmodium vivax transmission. eLife 2014, 3, e04692. [CrossRef] [PubMed]
Kerlin, D.H.; Gatton, M.L. A simulation model of the within-host dynamics of Plasmodium vivax infection. Malar. J. 2015, 14, 51. [CrossRef] [PubMed]
White, N.J.; Imwong, M. Relapse. In Advances in Parasitology; Hay, S.I., Price, R., Baird, J.K., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 113–150.
Delgado-Ratto, C.; Soto-Calle, V.E.; Van den Eede, P.; Gamboa, D.; Rosas, A.; Abatih, E.N.; Ferrucci, H.R.; Llanos-Cuentas, A.; Van Geertruyden, J.P.; Erhart, A.; et al. Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon. Malar. J. 2014, 13, 8. [CrossRef] [PubMed]
Kerlin, D.H.; Gatton, M.L. Preferential Invasion by Plasmodium Merozoites and the Self-Regulation of Parasite Burden. PLoS ONE 2013, 8. [CrossRef] [PubMed]
Carrasco-Escobar, G.; Gamboa, D.; Castro, M.C.; Bangdiwala, S.I.; Rodriguez, H.; Contreras-Mancilla, J.; Alava, F.; Speybroeck, N.; Lescano, A.G.; Vinetz, J.M.; et al. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci. Rep. 2017, 7, 8082. [CrossRef] [PubMed]
Adekunle, A.I.; Pinkevych, M.; McGready, R.; Luxemburger, C.; White, L.J.; Nosten, F.; Cromer, D.; Davenport, M.P. Modeling the dynamics of Plasmodium vivax infection and hypnozoite reactivation in vivo. PLoS Negl. Trop. Dis. 2015, 9, e0003595. [CrossRef] [PubMed]
Robinson, L.J.; Wampfler, R.; Betuela, I.; Karl, S.; White, M.T.; Suen, C.S.L.W.; Hofmann, N.E.; Kinboro, B.; Waltmann, A.; Brewster, J.; et al. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: A randomised placebo-controlled trial and mathematical model. PLoS Med. 2015, 12, e1001891. [CrossRef] [PubMed]
Chuquiyauri, R.; Peñataro, P.; Brouwer, K.C.; Fasabi, M.; Calderon, M.; Torres, S.; Gilman, R.H.; Kosek, M.; Vinetz, J.M. Microgeographical differences of Plasmodium vivax relapse and re-infection in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2013, 89, 326–338. [CrossRef] [PubMed]
Miguel, R.B.; Coura, J.R.; Samudio, F.; Suárez-Mutis, M.C. Evaluation of three different DNA extraction methods from blood samples collected in dried filter paper in Plasmodium subpatent infections from the Amazon region in Brazil. Rev. Inst. Med. Trop. Sao Paulo 2013, 55. [CrossRef] [PubMed]
Mixson-Hayden, T.; Lucchi, N.W.; Udhayakumar, V. Evaluation of three PCR-based diagnostic assays for detecting mixed Plasmodium infection. BMC Res. Notes 2010, 3, 88. [CrossRef] [PubMed]
Carrasco-Escobar, G.; Miranda-Alban, J.; Fernandez-Miñope, C.; Brouwer, K.C.; Torres, K.; Calderon, M.; Gamboa, D.; Llanos-Cuentas, A.; Vinetz, J.M. High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: Insights into local and occupational mobility-related transmission. Malar. J. 2017, 16, 415. [CrossRef] [PubMed]